18 research outputs found

    Studying memory processes at different levels with simultaneous depth and surface EEG recordings

    Get PDF
    Investigating cognitive brain functions using non-invasive electrophysiology can be challenging due to the particularities of the task-related EEG activity, the depth of the activated brain areas, and the extent of the networks involved. Stereoelectroencephalographic (SEEG) investigations in patients with drug-resistant epilepsy offer an extraordinary opportunity to validate information derived from non-invasive recordings at macro-scales. The SEEG approach can provide brain activity with high spatial specificity during tasks that target specific cognitive processes (e.g., memory). Full validation is possible only when performing simultaneous scalp SEEG recordings, which allows recording signals in the exact same brain state. This is the approach we have taken in 12 subjects performing a visual memory task that requires the recognition of previously viewed objects. The intracranial signals on 965 contact pairs have been compared to 391 simultaneously recorded scalp signals at a regional and whole-brain level, using multivariate pattern analysis. The results show that the task conditions are best captured by intracranial sensors, despite the limited spatial coverage of SEEG electrodes, compared to the whole-brain non-invasive recordings. Applying beamformer source reconstruction or independent component analysis does not result in an improvement of the multivariate task decoding performance using surface sensor data. By analyzing a joint scalp and SEEG dataset, we investigated whether the two types of signals carry complementary information that might improve the machine-learning classifier performance. This joint analysis revealed that the results are driven by the modality exhibiting best individual performance, namely SEEG

    Probabilistic functional tractography of the human cortex revisited

    Get PDF
    In patients with pharmaco-resistant focal epilepsies investigated with intracranial electroencephalography (iEEG), direct electrical stimulations of a cortical region induce cortico-cortical evoked potentials (CCEP) in distant cerebral cortex, which properties can be used to infer large scale brain connectivity. In 2013, we proposed a new probabilistic functional tractography methodology to study human brain connectivity. We have now been revisiting this method in the F-TRACT project (f-tract.eu) by developing a large multicenter CCEP database of several thousand stimulation runs performed in several hundred patients, and associated processing tools to create a probabilistic atlas of human cortico-cortical connections. Here, we wish to present a snapshot of the methods and data of F-TRACT using a pool of 213 epilepsy patients, all studied by stereo-encephalography with intracerebral depth electrodes. The CCEPs were processed using an automated pipeline with the following consecutive steps: detection of each stimulation run from stimulation artifacts in raw intracranial EEG (iEEG) files, bad channels detection with a machine learning approach, model-based stimulation artifact correction, robust averaging over stimulation pulses. Effective connectivity between the stimulated and recording areas is then inferred from the properties of the first CCEP component, i.e. onset and peak latency, amplitude, duration and integral of the significant part. Finally, group statistics of CCEP features are implemented for each brain parcel explored by iEEG electrodes. The localization (coordinates, white/gray matter relative positioning) of electrode contacts were obtained from imaging data (anatomical MRI or CT scans before and after electrodes implantation). The iEEG contacts were repositioned in different brain parcellations from the segmentation of patients' anatomical MRI or from templates in the MNI coordinate system. The F-TRACT database using the first pool of 213 patients provided connectivity probability values for 95% of possible intrahemispheric and 56% of interhemispheric connections and CCEP features for 78% of intrahemisheric and 14% of interhemispheric connections. In this report, we show some examples of anatomo-functional connectivity matrices, and associated directional maps. We also indicate how CCEP features, especially latencies, are related to spatial distances, and allow estimating the velocity distribution of neuronal signals at a large scale. Finally, we describe the impact on the estimated connectivity of the stimulation charge and of the contact localization according to the white or gray matter. The most relevant maps for the scientific community are available for download on f-tract. eu (David et al., 2017) and will be regularly updated during the following months with the addition of more data in the F-TRACT database. This will provide an unprecedented knowledge on the dynamical properties of large fiber tracts in human.Peer reviewe

    SEEG re-exploration in a patient with complex frontal epilepsy with rapid perisylvian propagation and mixed "startle - reflex" seizures

    No full text
    International audienceThe SEEG International Course, organised in 2017, focused on the investigation and surgery of insulo-perisylvian epilepsies. We present one representative complex case that was discussed. The patient had seizures displaying startle/reflex components. He was MRI negative, while other non-invasive investigations offered only partially concordant data. Initial SEEG exploration resulted in an incomplete definition of the epileptogenic zone. A second SEEG followed, which led to a thorough assessment of the seizure onset zone and the epileptic network, localised to the lateral inferior premotor cortex, explaining the incongruent data obtained beforehand. This was the basis of a tailored resection with a favourable outcome. The patient has been seizure-free for five years without any motor nor cognitive deficits, but with pharmacodependence to one AED. The electroclinical reasoning is presented, accompanied by relevant commentaries and recommendations from the tutors [Published with video sequences]

    Successful epilepsy surgery in frontal lobe epilepsy with startle seizures: a SEEG study

    No full text
    Pre-surgical assessment and surgical management of frontal epilepsy with normal MRI is often challenging. We present a case of a 33-year-old, right-handed, educated male. During childhood, his seizures presented with mandibular myoclonus and no particular trigger. As a young adult, he developed seizures with a startle component, triggered by unexpected noises. During his ictal episodes, he felt fear and grimaced with sudden head flexion and tonic axial posturing. Similar seizures also occurred without startle. Neuropsychological assessment showed executive dysfunction and verbal memory deficit. The cerebral MRI was normal. Electro-clinical reasoning, investigations performed, the results obtained and follow-up are discussed in detail. [Published with video sequence]

    Identification of an early hippocampal recognition system using intracerebral evoked potentials in humans

    No full text
    The role of the hippocampal formation in memory recognition has been well studied in animals, with different pathways and structures linked to specific memory processes. In contrast, the hippocampus is commonly analyzed as a unique responsive area in most electrophysiological studies in humans, and the specific activity of its subfields remains unexplored. We combined intracerebral electroencephalogram recordings from epileptic patients with independent component analysis (ICA) during a memory recognition task involving the recognition of old and new images to disentangle the activities of multiple neuronal sources within the hippocampus. We identified two sources with different responses emerging from the hippocampus: a fast one (maximum at ∼250 ms) that could not be directly identified from raw recordings, and a later one, peaking at ∼400 ms. The earliest component was found in 12 out of 15 electrodes, with different amplitudes for old and new items in half of the electrodes. The latter component, identified in 13 out of 15 electrodes, had different delays for each condition, with a faster activation (∼290 ms after stimulus onset) for recognized items. We hypothesize that both sources represent two steps of hippocampal memory recognition, the faster reflecting the input from other structures and the latter the hippocampal internal processing. Recognized images evoking early activations would facilitate neural computation in the hippocampus, accelerating memory retrieval of complementary information. Overall, our results suggest that hippocampal activity is composed by several sources, including an early system for memory recognition, that can be disentangled with ICA methods

    Automatic bad channel detection in intracranial electroencephalographic recordings using ensemble machine learning

    No full text
    International audienceObjective : Intracranial electroencephalographic (iEEG) recordings contain “bad channels”, which show non-neuronal signals. Here, we developed a new method that automatically detects iEEG bad channels using machine learning of seven signal features.Methods : The features quantified signals’ variance, spatial–temporal correlation and nonlinear properties. Because the number of bad channels is usually much lower than the number of good channels, we implemented an ensemble bagging classifier known to be optimal in terms of stability and predictive accuracy for datasets with imbalanced class distributions. This method was applied on stereo-electroencephalographic (SEEG) signals recording during low frequency stimulations performed in 206 patients from 5 clinical centers.Results : We found that the classification accuracy was extremely good: It increased with the number of subjects used to train the classifier and reached a plateau at 99.77% for 110 subjects. The classification performance was thus not impacted by the multicentric nature of data.Conclusions : The proposed method to automatically detect bad channels demonstrated convincing results and can be envisaged to be used on larger datasets for automatic quality control of iEEG data.Significance : This is the first method proposed to classify bad channels in iEEG and should allow to improve the data selection when reviewing iEEG signals
    corecore