120 research outputs found
Ordovician chitinous hydroids from Hudson Strait, District of Franklin, Northwest Territories
Chitinous hydroids are documented for the first time from the Upper Ordovician of Eastern Canada, and for the fourth time from North American rocks. One hydrosome branch segment is provisionally attributed to Rhabdohydra Kozlowski. The excellent three dimensional preservation shows the periderm is layered and vesiculate. Periderm thinning, present in Recent chitinous hydroids, is also noted for Ordovician hydroids.
RÉSUMÉ
Une premiére signalisation, d'hydro ides chitineuses dans l’Ordovicien sup iérieur de l'Est du Canada vient s'ajouter aux trois documents deja issus de roches nord-ameiicaines. Un segment de rameau hydrosomal est rapporte' avec r iéserve au genre Rhabdohydra Kozlowski. line excellente conservation dans ses trois dimensions d iémontre que le p iériderme est vésiculeux et constitu ié de plusieurs couches. L'amincissement du p iériderme, ph iénom iène connu des hydroides chitineuses actuelles, se manifeste aussi chez les hydroides ordoviciennes
Late Ordovician to early Silurian acritarchs from the Qusaiba-1 shallow core hole, central Saudi Arabia
Well-preserved acritarchs are documented from Upper Ordovician and lower Silurian sections in the Qusaiba-1 shallow core hole of central Saudi Arabia. Sixty-nine genera comprising 68 named species and 62 forms under open nomenclature were recorded from forty core samples.
At the base of the Upper Ordovician and lower Silurian succession in Qusaiba-1 is the Quwarah Member of the Qasim Formation. This is overlain by glacio-marine deposits of the Sarah Formation, which are overlain in turn by the Qusaiba Member of the Qalibah Formation. Four distinct acritarch assemblages are informally numbered 1 to 4 from the base of the core upwards. Assemblage 1 is from the Quwarah Member, and is independently dated by Chitinozoa as being late Katian to early Hirnantian in age (Late Ordovician). The assemblage contains a number of new species, plus species reported from low-latitude Late Ordovician Laurentia and Baltica as well as the Gondwanan margin. Assemblage 2 is from a glacitectonite at the base of the Sarah Formation and is early Hirnantian in age. Assemblage 3, from the Baq'a Shale Member of the Sarah Formation, is also Hirnantian in age and is characterized by a stratigraphically admixed Ordovician palynoflora. Assemblage 4 is restricted to three samples from the Qusaiba Member in the lowermost part of the Qalibah Formation and is dated as Rhuddanian (earliest Silurian). The highest of the three samples that comprise Assemblage 4 is from the same level as a gamma ray peak at 254.8 ft.
Reworking of Middle Ordovician forms is evident in Assemblage 3 and is attributed to processes of glacial erosion and resedimentation during glacial melting. Reworked specimens are probably from the Hanadir Member and possibly also the Kahfah Member of the Qasim Formation. The extent of later Ordovician reworking in Assemblage 3, for example reworking from the Quwarah Member, is unclear. However, given that glacial erosion extended to levels below the Quwarah Member, Late Ordovician palynomorphs present in Assemblage 3 might also be reworked. The extent of any reworking in assemblages 1 and 2 is uncertain. There is no evidence for reworking in Assemblage 4.
Two new acritarch genera, five new species and one new combination are proposed: Dorsennidium polorum (Miller and Eames, 1982) comb. nov., Falavia magniretifera gen. et sp. nov., Inflatarium trilobatum gen. et sp. nov., Nexosarium mansouri sp. nov., Orthosphaeridium orthogonium sp. nov. and Tunisphaeridium bicaudatum sp. nov. Samples from the same set were used for chitinozoan, scolecodont and miospore studies (this volume). Eurypterid and graptolite remains are also presen
An ATP-binding cassette-type cysteine transporter in Campylobacter jejuni inferred from the structure of an extracytoplasmic solute receptor protein
Campylobacter jejuni is a Gram-negative food-borne pathogen associated with gastroenteritis in humans as well as cases of the autoimmune disease Guillain Barre syndrome. C. jejuni is asaccharolytic because it lacks an active glycolytic pathway for the use of sugars as a carbon source. This suggests an increased reliance on amino acids as nutrients and indeed the genome sequence of this organism indicates the presence of a number of amino acid uptake systems. Cj0982, also known as CjaA, is a putative extracytoplasmic solute receptor for one such uptake system as well as a major surface antigen and vaccine candidate. The crystal structure of Cj0982 reveals a two-domain protein with density in the enclosed cavity between the domains that clearly defines the presence of a bound cysteine ligand. Fluorescence titration experiments were used to demonstrate that Cj0982 binds cysteine tightly and specifically with a K-d of similar to 10(-7) M consistent with a role as a receptor for a high- affinity transporter. These data imply that Cj0982 is the binding protein component of an ABC-type cysteine transporter system and that cysteine uptake is important in the physiology of C. jejuni
DNA Damage and Reactive Nitrogen Species are Barriers to Vibrio cholerae Colonization of the Infant Mouse Intestine
Ingested Vibrio cholerae pass through the stomach and colonize the small intestines of its host. Here, we show that V. cholerae requires at least two types of DNA repair systems to efficiently compete for colonization of the infant mouse intestine. These results show that V. cholerae experiences increased DNA damage in the murine gastrointestinal tract. Agreeing with this, we show that passage through the murine gut increases the mutation frequency of V. cholerae compared to liquid culture passage. Our genetic analysis identifies known and novel defense enzymes required for detoxifying reactive nitrogen species (but not reactive oxygen species) that are also required for V. cholerae to efficiently colonize the infant mouse intestine, pointing to reactive nitrogen species as the potential cause of DNA damage. We demonstrate that potential reactive nitrogen species deleterious for V. cholerae are not generated by host inducible nitric oxide synthase (iNOS) activity and instead may be derived from acidified nitrite in the stomach. Agreeing with this hypothesis, we show that strains deficient in DNA repair or reactive nitrogen species defense that are defective in intestinal colonization have decreased growth or increased mutation frequency in acidified nitrite containing media. Moreover, we demonstrate that neutralizing stomach acid rescues the colonization defect of the DNA repair and reactive nitrogen species defense defective mutants suggesting a common defense pathway for these mutants
Vibrio cholerae vexH Encodes a Multiple Drug Efflux Pump That Contributes to the Production of Cholera Toxin and the Toxin Co-Regulated Pilus
The resistance-nodulation-division (RND) efflux systems are ubiquitous transporters that function in antimicrobial resistance. Recent studies showed that RND systems were required for virulence factor production in Vibrio cholerae. The V. cholerae genome encodes six RND efflux systems. Three of the RND systems (VexB, VexD, and VexK) were previously shown to be redundant for in vitro resistance to bile acids and detergents. A mutant lacking the VexB, VexD, and VexK RND pumps produced wild-type levels of cholera toxin (CT) and the toxin co-regulated pilus (TCP) and was moderately attenuated for intestinal colonization. In contrast, a RND negative mutant produced significantly reduced amounts of CT and TCP and displayed a severe colonization defect. This suggested that one or more of the three uncharacterized RND efflux systems (i.e. VexF, VexH, and VexM) were required for pathogenesis. In this study, a genetic approach was used to generate a panel of V. cholerae RND efflux pump mutants in order to determine the function of VexH in antimicrobial resistance, virulence factor production, and intestinal colonization. VexH contributed to in vitro antimicrobial resistance and exhibited a broad substrate specificity that was redundant with the VexB, VexD, and VexK RND efflux pumps. These four efflux pumps were responsible for in vitro antimicrobial resistance and were required for virulence factor production and intestinal colonization. Mutation of the VexF and/or VexM efflux pumps did not affect in vitro antimicrobial resistance, but did negatively affect CT and TCP production. Collectively, our results demonstrate that the V. cholerae RND efflux pumps have redundant functions in antimicrobial resistance and virulence factor production. This suggests that the RND efflux systems contribute to V. cholerae pathogenesis by providing the bacterium with protection against antimicrobial compounds that are present in the host and by contributing to the regulated expression of virulence factors
Sensing and Adaptation to Low pH Mediated by Inducible Amino Acid Decarboxylases in Salmonella
During the course of infection, Salmonella enterica serovar Typhimurium must successively survive the harsh acid stress of the stomach and multiply into a mild acidic compartment within macrophages. Inducible amino acid decarboxylases are known to promote adaptation to acidic environments. Three low pH inducible amino acid decarboxylases were annotated in the genome of S. Typhimurium, AdiA, CadA and SpeF, which are specific for arginine, lysine and ornithine, respectively. In this study, we characterized and compared the contributions of those enzymes in response to acidic challenges. Individual mutants as well as a strain deleted for the three genes were tested for their ability (i) to survive an extreme acid shock, (ii) to grow at mild acidic pH and (iii) to infect the mouse animal model. We showed that the lysine decarboxylase CadA had the broadest range of activity since it both had the capacity to promote survival at pH 2.3 and growth at pH 4.5. The arginine decarboxylase AdiA was the most performant in protecting S. Typhimurium from a shock at pH 2.3 and the ornithine decarboxylase SpeF conferred the best growth advantage under anaerobiosis conditions at pH 4.5. We developed a GFP-based gene reporter to monitor the pH of the environment as perceived by S. Typhimurium. Results showed that activities of the lysine and ornithine decarboxylases at mild acidic pH did modify the local surrounding of S. Typhimurium both in culture medium and in macrophages. Finally, we tested the contribution of decarboxylases to virulence and found that these enzymes were dispensable for S. Typhimurium virulence during systemic infection. In the light of this result, we examined the genomes of Salmonella spp. normally responsible of systemic infection and observed that the genes encoding these enzymes were not well conserved, supporting the idea that these enzymes may be not required during systemic infection
Liver × receptor ligands disrupt breast cancer cell proliferation through an E2F-mediated mechanism
Immune Subversion and Quorum-Sensing Shape the Variation in Infectious Dose among Bacterial Pathogens
Many studies have been devoted to understand the mechanisms used by pathogenic bacteria to exploit human hosts. These mechanisms are very diverse in the detail, but share commonalities whose quantification should enlighten the evolution of virulence from both a molecular and an ecological perspective. We mined the literature for experimental data on infectious dose of bacterial pathogens in humans (ID50) and also for traits with which ID50 might be associated. These compilations were checked and complemented with genome analyses. We observed that ID50 varies in a continuous way by over 10 orders of magnitude. Low ID50 values are very strongly associated with the capacity of the bacteria to kill professional phagocytes or to survive in the intracellular milieu of these cells. Inversely, high ID50 values are associated with motile and fast-growing bacteria that use quorum-sensing based regulation of virulence factors expression. Infectious dose is not associated with genome size and shows insignificant phylogenetic inertia, in line with frequent virulence shifts associated with the horizontal gene transfer of a small number of virulence factors. Contrary to previous proposals, infectious dose shows little dependence on contact-dependent secretion systems and on the natural route of exposure. When all variables are combined, immune subversion and quorum-sensing are sufficient to explain two thirds of the variance in infectious dose. Our results show the key role of immune subversion in effective human infection by small bacterial populations. They also suggest that cooperative processes might be important for successful infection by bacteria with high ID50. Our results suggest that trade-offs between selection for population growth-related traits and selection for the ability to subvert the immune system shape bacterial infectiousness. Understanding these trade-offs provides guidelines to study the evolution of virulence and in particular the micro-evolutionary paths of emerging pathogens
Cancer Cells Expressing Toll-like Receptors and the Tumor Microenvironment
Toll-like receptors (TLRs) play a crucial role in the innate immune response and the subsequent induction of adaptive immune responses against microbial infection or tissue injury. Recent findings show that functional TLRs are expressed not only on immune cells but also on cancer cells. TLRs play an active role in carcinogenesis and tumor progression during chronic inflammation that involves the tumor microenvironment. Damage-associated molecular patterns (DAMPs) derived from injured normal epithelial cells and necrotic cancer cells appear to be present at significant levels in the tumor microenvironment, and their stimulation of specific TLRs can foster chronic inflammation. This review discusses how carcinogenesis, cancer progression, and site-specific metastasis are related to interactions between cancer cells, immune cells, and DAMPs through TLR activation in the tumor microenvironment
Expansion of immunoglobulin-secreting cells and defects in B cell tolerance in Rag-dependent immunodeficiency
The contribution of B cells to the pathology of Omenn syndrome and leaky severe combined immunodeficiency (SCID) has not been previously investigated. We have studied a mut/mut mouse model of leaky SCID with a homozygous Rag1 S723C mutation that impairs, but does not abrogate, V(D)J recombination activity. In spite of a severe block at the pro–B cell stage and profound B cell lymphopenia, significant serum levels of immunoglobulin (Ig) G, IgM, IgA, and IgE and a high proportion of Ig-secreting cells were detected in mut/mut mice. Antibody responses to trinitrophenyl (TNP)-Ficoll and production of high-affinity antibodies to TNP–keyhole limpet hemocyanin were severely impaired, even after adoptive transfer of wild-type CD4+ T cells. Mut/mut mice produced high amounts of low-affinity self-reactive antibodies and showed significant lymphocytic infiltrates in peripheral tissues. Autoantibody production was associated with impaired receptor editing and increased serum B cell–activating factor (BAFF) concentrations. Autoantibodies and elevated BAFF levels were also identified in patients with Omenn syndrome and leaky SCID as a result of hypomorphic RAG mutations. These data indicate that the stochastic generation of an autoreactive B cell repertoire, which is associated with defects in central and peripheral checkpoints of B cell tolerance, is an important, previously unrecognized, aspect of immunodeficiencies associated with hypomorphic RAG mutations
- …