17 research outputs found

    Human Appropriation of Net Primary Productivity and Rural Livelihoods: Findings From Six Villages in Zimbabwe

    Get PDF
    The African land system is undergoing rapid change, and novel approaches are needed to understand the drivers and consequences of land use intensification. Human Appropriation of Net Primary Productivity (HANPP) is a powerful indicator of land use intensity, but has rarely been calculated at high spatial resolutions. Based on data from six villages in Zimbabwe, we present a novel method of calculating HANPP at community and household scales, and explore to what extent household wealth is related to NPP appropriation. HANPP at the village scale was higher than expected from previous studies, ranging from 48% to 113% of potential NPP. Loss of NPP through land use change accounted for the greater proportion of HANPP in four of the six villages, but NPP embodied in livestock feed, firewood and construction materials also contributed significantly to total appropriation. Increasing household wealth was associated with increasing appropriation of NPP in harvested resources, but not with loss of potential NPP through land use change. Our results indicate that land use intensity is currently underestimated in smallholder farming areas of southern Africa. High-resolution HANPP calculations based on field data offer an effective new approach to improving understanding of land use intensification in complex socioecological system

    Weighing the relative potential impacts of climate change and land‐use change on an endangered bird

    No full text
    Climate change and land‐use change are projected to be the two greatest drivers of biodiversity loss over the coming century. Land‐use change has resulted in extensive habitat loss for many species. Likewise, climate change has affected many species resulting in range shifts, changes in phenology, and altered interactions. We used a spatially explicit, individual‐based model to explore the effects of land‐use change and climate change on a population of the endangered Red‐cockaded Woodpecker (RCW; Picoides borealis). We modeled the effects of land‐use change using multiple scenarios representing different spatial arrangements of new training areas for troops across Fort Benning. We used projected climate‐driven changes in habitat and changes in reproductive output to explore the potential effects of climate change. We summarized potential changes in habitat based on the output of the dynamic vegetation model LPJ‐GUESS, run for multiple climate change scenarios through the year 2100. We projected potential changes in reproduction based on an empirical relationship between spring precipitation and the mean number of successful fledglings produced per nest attempt. As modeled in our study, climate change had virtually no effect on the RCW population. Conversely, simulated effects of land‐use change resulted in the loss of up to 28 breeding pairs by 2100. However, the simulated impacts of development depended on where the development occurred and could be completely avoided if the new training areas were placed in poor‐quality habitat. Our results demonstrate the flexibility inherent in many systems that allows seemingly incompatible human land uses, such as development, and conservation actions to exist side by side

    Impact of increased wood pellet demand on biodiversity in the south-eastern United States

    Get PDF
    Increasing wood pellet exports from the United States are projected to lead to changes in land use and timberland management, including a shift from natural timberland to pine plantations. These projected changes may impact biodiversity. This study aims to quantify potential biodiversity impacts of increased wood pellet demand in the south-eastern United States in a spatially explicit manner. We determined differences according to an index of potential species richness (for total, threatened and endemic species and four taxonomic groups) between scenarios of high and low demand for wood pellets, while taking into account potential developments in other wood markets and other land uses. Increased demand for wood pellets was projected to cause both positive and negative biodiversity impacts. Negative shifts in total potential species richness were projected for areas in Florida, coastal Virginia and North Carolina, and parts of the Gulf Coast. Positive shifts in total potential species richness were projected in parts of Oklahoma and Arkansas. In some locations, the direction of change differed per taxonomic group, highlighting the importance of analysing different taxonomic groups. Shifts in potential species richness due to increased wood pellet demand were considerably smaller compared to the changes due to other drivers, such as urbanization and increased timber demand. Biodiversity impacts due to wood pellet demand should therefore be considered in the context of other drivers of land-use change and biodiversity loss. Our results provide information that allows policymakers, industry and NGOs to focus on areas of concern and take appropriate mitigation measures to limit negative biodiversity impacts and promote positive impacts. The spatially explicit approach presented in this study can be applied to different regions and drivers of land-use change, to show how projected demand for an internationally traded commodity may lead to impacts on land use and biodiversity in the procurement region

    Climate change impacts on the water resources of American Indians and Alaska Natives in the U.S.

    No full text
    Climatic Change, 120(3), pp. 569-584.This informative paper links the perspectives and concerns of American Indians with predictions of climate change impacts on natural resources and Native communities. The report cites current and predicted impacts on the Fond du Lac Reservation in northeastern Minnesota, referencing several local sources and tribal authorities. Extracts of key points are reproduced below. "This paper provides an overview of climate change impacts on tribal water resources and the subsequent cascading effects on the livelihoods and cultures of American Indians and Alaska Natives living on tribal lands in the U.S. A hazards and vulnerability framework for understanding these impacts is first presented followed by context on the framework components, including climate, hydrologic, and ecosystem changes (i.e. hazards) and tribe-specific vulnerability factors (socioeconomic, political, infrastructural, environmental, spiritual and cultural), which when combined with hazards lead to impacts. Next regional summaries of impacts around the U.S. are discussed. Although each tribal community experiences unique sets of impacts because of their individual history, culture, and geographic setting, many of the observed impacts are common among different groups and can be categorized as impacts on—1) water supply and management (including water sources and infrastructure), 2) aquatic species important for culture and subsistence, 3) ranching and agriculture particularly from climate extremes (e.g., droughts, floods), 4) tribal sovereignty and rights associated with water resources, fishing, hunting, and gathering, and 5) soil quality (e.g., from coastal and riverine erosion prompting tribal relocation or from drought-related land degradation). The paper finishes by highlighting potentially relevant research questions based on the five impact categories. The Midwest (MW) is the location of the five lakes comprising the Great Lakes that together form Earth’s largest surface freshwater system. Thirty federally recognized tribes live in MW states and depend on this resource. Ceremonies honoring the waters as the life-blood of Mother Earth are held throughout the region. MW Tribes depend on the waters for subsistence and commercial fishing and for water-based plant materials for traditional crafts and artwork. Additionally, most MW tribes now operate gaming facilities and other tourism enterprises that rely heavily upon water for aesthetic and recreational uses. Many MW tribes consider climate change adaptation to be one of the most important long-range environmental issues for tribal nations. Michigan tribes, for instance, have worked with the state to negotiate and sign the May 12, 2004 Intergovernmental Accord between the Federally Recognized Indian Tribes in Michigan and the Governor of the State of Michigan Concerning Protection of Shared Water Resources and the June 11, 2009 Intergovernmental Accord between the Tribal Leaders of the Federally Recognized Indian Tribes in Michigan and the Governor of Michigan to Address the Crucial Issue of Climate Change. Biannual meetings are held between the state and tribes to discuss shared responsibilities and potential cooperative efforts. Impacts on MW tribes are diverse. Key impacts are related to flora and fauna important for diet, acknowledging clan responsibilities, social and mental health, and the exercise of treaty rights. Traditional healers in the region, for instance, have noted that lack of moisture and unreliable springtime temperatures have caused significant wild and cultivated crop losses. Wild rice (manoomin) is a sacred food of great importance to the Ojibwe of the Great Lakes area and may be detrimentally affected by climate change. In the Ojibwe Migration Story, The Great Mystery foretold the coming of the light-skinned race and instructed the Ojibwe to journey westward until they found ‘the food that grows on water.’ Since the 1900s, the loss of wild rice acreage to mining, dams, and other activities has been substantial. Warmer temperatures could cause further losses by reducing seed dormancy, favoring invasive, out-competing plants, and being conducive to brown spot disease. Water levels also influence rice survival. Extremely low Lake Superior levels in 2007 forced the Bad River Band of the Lake Superior Tribe of Chippewa (WI) to cancel its annual wild rice harvest due to dramatic crop reductions. A 2012 flood led to near total wild rice crop failure on the Fond du Lac Reservation. Tribes in the Great Lakes area rely on treaty fishing, hunting, and gathering rights. The exercise of these rights requires considerable attention to environmental issues, including climate changes that affect species and habitats. These rights have been the subject of several court cases, which have resulted in decisions upholding tribal rights. Native American tribes need relevant and culturally appropriate monitoring, assessment, and research on their waters and lands and to develop or be included in the development of contingency, management, and mitigation plans. Tribes also greatly need actual implementation of projects. Although climate change preparedness can take place as a stand-alone effort, climate change considerations can be included as part of planning and implementation that is already occurring. Tribes or intertribal organizations must decide what constitutes relevant work. We propose research questions that might be significant for tribes based on the five impact categories. These include examples of science, policy, and social science questions related both to further identifying impacts and contributing climate and vulnerability factors and to identifying adaptation strategies."Cozzetto, K; Chief, K; Kittmer, K; Brubaker, M; Gough, R; Souza, K; Ettawageshik, F; Wotkyns, S; Opitz-Stapleton, S; Duren, S; Chavan, P. (2013). Climate Change Impacts on the Water Resources of American Indians and Alaska Natives in the U.S.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/189188
    corecore