37 research outputs found

    Complex organic molecules along the accretion flow in isolated and externally irradiated protoplanetary disks

    Get PDF
    The birth environment of the Sun will have influenced the physical and chemical structure of the pre-solar nebula, including the attainable chemical complexity reached in the disk, important for prebiotic chemistry. The formation and distribution of complex organic molecules (COMs) in a disk around a T Tauri star is investigated for two scenarios: (i) an isolated disk, and (ii) a disk irradiated externally by a nearby massive star. The chemistry is calculated along the accretion flow from the outer disk inwards using a comprehensive network which includes gas-phase reactions, gas-grain interactions, and thermal grain-surface chemistry. Two simulations are performed, one beginning with complex ices and one with simple ices only. For the isolated disk, COMs are transported without major chemical alteration into the inner disk where they thermally desorb into the gas reaching an abundance representative of the initial assumed ice abundance. For simple ices, COMs can efficiently form on grain surfaces under the conditions in the outer disk. Gas-phase COMs are released into the molecular layer via photodesorption. For the irradiated disk, complex ices are also transported inwards; however, they undergo thermal processing caused by the warmer conditions in the irradiated disk which tends to reduce their abundance along the accretion flow. For simple ices, grain-surface chemistry cannot efficiently synthesise COMs in the outer disk because the necessary grain-surface radicals, which tend to be particularly volatile, are not sufficiently abundant on the grain surfaces. Gas-phase COMs are formed in the inner region of the irradiated disk via gas-phase chemistry induced by the desorption of strongly bound molecules such as methanol; hence, the abundances are not representative of the initial molecular abundances injected into the outer disk. These results suggest that the composition of comets formed in isolated disks may differ from those formed in externally irradiated disks with the latter composed of more simple ices

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    Meropenem vs standard of care for treatment of late onset sepsis in children of less than 90 days of age: study protocol for a randomised controlled trial

    Get PDF
    Background: Late onset neonatal sepsis (LOS) with the mortality of 17 to 27% is still a serious disease. Meropenem is an antibiotic with wide antibacterial coverage. The advantage of it over standard of care could be its wider antibacterial coverage and thus the use of mono-instead of combination therapy.Methods: NeoMero-1, an open label, randomised, comparator controlled, superiority trial aims to compare the efficacy of meropenem with a predefined standard of care (ampicillin + gentamicin or cefotaxime + gentamicin) in the treatment of LOS in neonates and infants aged less than 90 days admitted to a neonatal intensive care unit. A total of 550 subjects will be recruited following a 1:1 randomisation scheme. The trial includes patients with culture confirmed (at least one positive culture from normally sterile site except coagulase negative staphylococci in addition to one clinical or laboratory criterion) or clinical sepsis (at least two laboratory and two clinical criteria suggestive of LOS in subjects with postmenstrual age = 44 weeks). Meropenem will be given at a dose of 20 mg/kg q12h or q8h depending on the gestational- and postnatal age. Comparator agents are administered as indicated in British National Formulary for Children. The primary endpoint measured at the test of cure visit (2 days after end of study therapy) is graded to success (all baseline symptoms and laboratory parameters are resolved or improved with no need to continue antibiotics and the baseline microorganisms are eradicated and no new microorganisms are identified and the patient has received allocated treatment for 11 +/- 3 days with no modification) or a failure (all remaining cases). Secondary outcome measures include comparison of survival, relapse rates or new infections by Day 28, clinical response at Day 3 and end of therapy, duration of hospitalisation, population pharmacokinetic analysis of meropenem and effect of antibiotics on mucosal colonisation and development of antibacterial resistance. The study will start recruitment in September 2011; the total duration is of 24 months

    Cross-modal matching in first school children

    No full text
    This research examines how cross-modal and within-modal matching differ. Three broad classes of difference are considered, that crossmodal matching requires (a) "translation" between modality-specific stores or (b) "transformation" of information when different information is available through each modality or (c) transformation, whatever the information available through each modality, owing to differences in encoding strategy. Visual-kinaesthetic matching of the end-point of lever movements has been investigated. It is argued that adult cross-modal performance depends on information and strategy, not directly on modality. Results with children have been less clear, experiments were therefore undertaken, with subjects aged 6-9 years. The hypothesis was that childrens' performance also would be determined by available information, and strategy. With information differences eliminated, modality conditions did not differ in within-subject variability, with up to 20 second unfilled retention intervals. With visual information enhanced by background cues and emphasis of the body midline, visual matching was superior to kinaesthetic, and within-modal was superior to cross-modal matching. These differences disappeared with practice, together with coding relative to the midline in the cross-modal conditions. Midline-relative coding was the norm with the midline emphasised, and without background cues. With or without variability differences, VV did not differ from KK in bias, but KV resulted in greater overshooting, VK greater undershooting. The most likely explanation is resistance to movement when perception is kinaesthetic, causing overestimation of distance moved. Consideration of the information normally available to subjects, generated the hypothesis that temporal and spatial parameters should interact more with kinaesthetic than with visual perception. This was supported, since movement velocity biased only kinaesthetic judgements. It is concluded that matching performance depends on the information encoded and used as the basis of matching, which depends on strategy; strategy depends on information (a) available during stimulus presentation, (b) normally available in each modality, (c) which it is anticipated will be available during response.</p

    Imagery and blindness

    No full text

    Book Review: Teaching and talking with deaf children

    No full text
    corecore