147 research outputs found

    Neighborhood disadvantage across the transition from adolescence to adulthood and risk of metabolic syndrome

    Get PDF
    This study investigates the association between neighborhood disadvantage from adolescence to young adulthood and metabolic syndrome using a life course epidemiology framework. Data from the United States-based National Longitudinal Study of Adolescent to Adult Health (n = 9500)and a structural equation modeling approach were used to test neighborhood disadvantage across adolescence, emerging adulthood, and young adulthood in relation to metabolic syndrome. Adolescent neighborhood disadvantage was directly associated with metabolic syndrome in young adulthood. Evidence supporting an indirect association between adolescent neighborhood disadvantage and adult metabolic syndrome was not supported. Efforts to improve cardiometabolic health may benefit from strategies earlier in life

    Amplitude measurements of Faraday waves

    Full text link
    A light reflection technique is used to measure quantitatively the surface elevation of Faraday waves. The performed measurements cover a wide parameter range of driving frequencies and sample viscosities. In the capillary wave regime the bifurcation diagrams exhibit a frequency independent scaling proportional to the wavelength. We also provide numerical simulations of the full Navier-Stokes equations, which are in quantitative agreement up to supercritical drive amplitudes of 20%. The validity of an existing perturbation analysis is found to be limited to 2.5% overcriticaly.Comment: 7 figure

    Horizontal deflection of single particle in a paramagnetic fluid

    Get PDF
    This paper describes the horizontal deflection behaviour of a single particle in paramagnetic fluids under a high-gradient superconducting magnetic field. A glass box was designed to carry out experiments and test assumptions. It was found that the particles were deflected away from the magnet bore centre and particles with different density and/or susceptibility settled at a certain position on the container floor due to the combined forces of gravity and magneto-Archimedes as well as lateral buoyant (displacement) force. Matlab was chosen to simulate the movement of the particle in the magnetic fluid, the simulation results were in good accordance with experimental data. The results presented here, though, are still very much in their infancy, which could potentially form the basis of a new approach to separating materials based on a combination of density and susceptibility. Graphical abstract: [Figure not available: see fulltext.

    Mechanical vibrations of pendant liquid droplets

    Get PDF
    A simple optical deflection technique was used to monitor the vibrations of microlitre pendant droplets of deuterium oxide, formamide, and 1,1,2,2-tetrabromoethane. Droplets of different volumes of each liquid were suspended from the end of a microlitre pipette and vibrated using a small puff of nitrogen gas. A laser was passed through the droplets and the scattered light was collected using a photodiode. Vibration of the droplets resulted in the motion of the scattered beam and time-dependent intensity variations were recorded using the photodiode. These time- dependent variations were Fourier transformed and the frequencies and widths of the mechanical droplet resonances were extracted. A simple model of vibrations in pendant/sessile drops was used to relate these parameters to the surface tension, density and viscosity of the liquid droplets. The surface tension values obtained from this method were found to be in good agreement with results obtained using the standard pendant drop technique. Damping of capillary waves on pendant drops was shown to be similar to that observed for deep liquid baths and the kinematic viscosities obtained were in agreement with literature values for all three liquids studied

    Diffusion of School-Based Prevention Programs in Two Urban Districts: Adaptations, Rationales, and Suggestions for Change

    Get PDF
    The diffusion of school-based preventive interventions involves the balancing of high-fidelity implementation of empirically-supported programs with flexibility to permit local stakeholders to target the specific needs of their youth. There has been little systematic research that directly seeks to integrate research- and community-driven approaches to diffusion. The present study provides a primarily qualitative investigation of the initial roll-out of two empirically-supported substance and violence prevention programs in two urban school districts that serve a high proportion of low-income, ethnic minority youth. The predominant ethnic group in most of our study schools was Asian American, followed by smaller numbers of Latinos, African Americans, and European Americans. We examined the adaptations made by experienced health teachers as they implemented the programs, the elicitation of suggested adaptations to the curricula from student and teacher stakeholders, and the evaluation of the consistency of these suggested adaptations with the core components of the programs. Data sources include extensive classroom observations of curricula delivery and interviews with students, teachers, and program developers. All health teachers made adaptations, primarily with respect to instructional format, integration of real-life experiences into the curriculum, and supplementation with additional resources; pedagogical and class management issues were cited as the rationale for these changes. Students and teachers were equally likely to propose adaptations that met with the program developers’ approval with respect to program theory and implementation logistics. Tensions between teaching practice and prevention science—as well as implications for future research and practice in school-based prevention—are considered

    Thermally Triggered Hydrogel Injection Into Bovine Intervertebral Disc Tissue Explants Induces Differentiation Of Mesenchymal Stem Cells And Restores Mechanical Function.

    Get PDF
    We previously reported a synthetic Laponite® crosslinked pNIPAM-co-DMAc (L-pNIPAM-co-DMAc) hydrogel which promotes differentiation of mesenchymal stem cells (MSCs) to nucleus pulposus (NP) cells without additional growth factors. The clinical success of this hydrogel is dependent on: integration with surrounding tissue; the capacity to restore mechanical function; as well as supporting the viability and differentiation of delivered MSCs. Bovine NP tissue explants were injected with media (control), human MSCs (hMSCs) alone, acellular L-pNIPAM-co-DMAc hydrogel or hMSCs incorporated within the L-pNIPAM-co-DMAc hydrogel and maintained at 5% O2 for 6 weeks. Viability of native NP cells and delivered MSCs was maintained. Furthermore hMSCs delivered via the L-pNIPAM-co-DMAc hydrogel differentiated and produced NP matrix components: aggrecan, collagen type II and chondroitin sulphate, with integration of the hydrogel with native NP tissue. In addition L-pNIPAM-co-DMAc hydrogel injected into collagenase digested bovine discs filled micro and macro fissures, were maintained within the disc during loading and restored IVD stiffness. The mechanical support of the L-pNIPAM-co-DMAc hydrogel, to restore disc height, could provide immediate symptomatic pain relief, whilst the delivery of MSCs over time regenerates the NP extracellular matrix; thus the L-pNIPAM-co-DMAc hydrogel could provide a combined cellular and mechanical repair approach
    corecore