41 research outputs found

    Natural inhibitors of pancreatic lipase as new players in obesity treatment

    Get PDF
    Obesity is a multifactorial disease characterized by an excessive weight for height due to an enlarged fat deposition such as adipose tissue, which is attributed to a higher calorie intake than the energy expenditure. The key strategy to combat obesity is to prevent chronic positive impairments in the energy equation. However, it is often difficult to maintain energy balance, because many available foods are high-energy yielding, which is usually accompanied by low levels of physical activity. The pharmaceutical industry has invested many efforts in producing antiobesity drugs; but only a lipid digestion inhibitor obtained from an actinobacterium is currently approved and authorized in Europe for obesity treatment. This compound inhibits the activity of pancreatic lipase, which is one of the enzymes involved in fat digestion. In a similar way, hundreds of extracts are currently being isolated from plants, fungi, algae, or bacteria and screened for their potential inhibition of pancreatic lipase activity. Among them, extracts isolated from common foodstuffs such as tea, soybean, ginseng, yerba mate, peanut, apple, or grapevine have been reported. Some of them are polyphenols and saponins with an inhibitory effect on pancreatic lipase activity, which could be applied in the management of the obesity epidemic

    Bacterial Taxa Associated with High Adherence to Mediterranean Diet in a Spanish Population

    Get PDF
    The Mediterranean diet (MD) is recognised as one of the healthiest diets worldwide and is associated with the prevention of cardiovascular and metabolic diseases, among others. Dietary habits are considered one of the strongest modulators of the gut microbiota, which seems to play a significant role in the health and disease of the host. The purpose of the present study was to evaluate interactive associations between gut microbiota composition and habitual dietary intake in 360 Spanish adults of the Obekit cohort (normal weight, overweight and obese subjects). Dietary intake and adherence to the MD tests together with faecal samples were collected from each subject. Faecal 16S rRNA sequencing was performed and checked against the dietary habits. MetagenomeSeq was the statistical tool applied to analyse at the species taxonomic level. Results from this study confirm that a strong adherence to the MD increases the population of some beneficial bacteria, improving microbiota status towards a healthier pattern. Bifidobacterium animalis is the species with the strongest association with the MD. One of the highlights is the positive association between several SCFA-producing bacteria and high adherence to the MD. In conclusion, this study shows that MD, fibre, legumes, vegetables, fruit and nuts intakes are associated with an increase in butyrate-producing taxa such as Roseburia faecis, Ruminococcus bromii and Oscillospira (Flavonifractor) plautii

    Association of the Gut Microbiota with the Host's Health through an Analysis of Biochemical Markers, Dietary Estimation, and Microbial Composition

    Get PDF
    This research was funded by Centro Tecnológico para el Desarrollo Industrial (CDTI) through the program Consorcio de Investigación Empresarial Nacional (Programa CIEN, BIOFOOD Project) and by CIBERobn (Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CB12/03/30002).This study aims to analyze the relationship between gut microbiota composition and health parameters through specific biochemical markers and food consumption patterns in the Spanish population. This research includes 60 Spanish adults aged 47.3 ± 11.2 years old. Biochemical and anthropometric measurements, and a self-referred dietary survey (food frequency questionnaire), were analyzed and compared with the participant's gut microbiota composition analyzed by 16s rDNA sequencing. Several bacterial strains differed significantly with the biochemical markers analyzed, suggesting an involvement in the participant's metabolic health. Lower levels of Lactobacillaceae and Oscillospiraceae and an increase in Pasteurellaceae, Phascolarctobacterium, and Haemophilus were observed in individuals with higher AST levels. Higher levels of the Christensenellaceae and a decrease in Peptococcaceae were associated with higher levels of HDL-c. High levels of Phascolarctobacterium and Peptococcus and low levels of Butyricicoccus were found in individuals with higher insulin levels. This study also identified associations between bacteria and specific food groups, such as an increase in lactic acid bacteria with the consumption of fermented dairy products or an increase in Verrucomicrobiaceae with the consumption of olive oil. In conclusion, this study reinforces the idea that specific food groups can favorably modulate gut microbiota composition and have an impact on host's health

    Associations between olfactory pathway gene methylation marks, obesity features and dietary intakes

    Get PDF
    Abstract Background Olfaction is an important sense influencing food preferences, appetite, and eating behaviors. This hypothesis-driven study aimed to assess associations between olfactory pathway gene methylation signatures, obesity features, and dietary intakes. Methods A nutriepigenomic analysis was conducted in 474 adults from the Methyl Epigenome Network Association (MENA) project. Anthropometric measurements, clinical data, and serum metabolic profiles of the study population were obtained from structured databases of the MENA cohorts. Habitual dietary intake was assessed using a validated semiquantitative food frequency questionnaire. DNA methylation was measured in circulating white blood cells by microarray (Infinium Human Methylation 450 K BeadChips). FDR values (p < 0.0001) were used to select those CpGs that showed the best correlation with body mass index (BMI) and waist circumference (WC). Pathway analyses involving the characterization of genes involved in the olfactory transduction system were performed using KEGG and pathDIP reference databases. Results Overall, 15 CpG sites at olfactory pathway genes were associated with BMI (p < 0.0001) and WC (p < 0.0001) after adjustments for potential confounding factors. Together, methylation levels at the15 CpG sites accounted for 22% and 20% of the variability in BMI and WC (r 2 = 0.219, p < 0.001, and r 2 = 0.204, p < 0.001, respectively). These genes encompassed olfactory receptors (OR4D2, OR51A7, OR2T34, and OR2Y1) and several downstream signaling molecules (SLC8A1, ANO2, PDE2A, CALML3, GNG7, CALML6, PRKG1, and CAMK2D), which significantly regulated odor detection and signal transduction processes within the complete olfactory cascade, as revealed by pathway enrichment analyses (p = 1.94 × 10–10). Moreover, OR4D2 and OR2Y1 gene methylation patterns strongly correlated with daily intakes of total energy (p < 0.0001), carbohydrates (p < 0.0001), protein (p < 0.0001), and fat (p < 0.0001). Conclusions The results of this study suggest novel relationships between olfactory pathway gene methylation signatures, obesity indices, and dietary intakes

    Proposed guidelines to evaluate scientific validity and evidence for genotype-based dietary advice

    Get PDF
    Nutrigenetic research examines the effects of inter-individual differences in genotype on responses to nutrients and other food components, in the context of health and of nutrient requirements. A practical application of nutrigenetics is the use of personal genetic information to guide recommendations for dietary choices that are more efficacious at the individual or genetic subgroup level relative to generic dietary advice. Nutrigenetics is unregulated, with no defined standards, beyond some commercially adopted codes of practice. Only a few official nutrition-related professional bodies have embraced the subject, and, consequently, there is a lack of educational resources or guidance for implementation of the outcomes of nutrigenetic research. To avoid misuse and to protect the public, personalised nutrigenetic advice and information should be based on clear evidence of validity grounded in a careful and defensible interpretation of outcomes from nutrigenetic research studies. Evidence requirements are clearly stated and assessed within the context of state-of-the-art ‘evidence-based nutrition’. We have developed and present here a draft framework that can be used to assess the strength of the evidence for scientific validity of nutrigenetic knowledge and whether ‘actionable’. In addition, we propose that this framework be used as the basis for developing transparent and scientifically sound advice to the public based on nutrigenetic tests. We feel that although this area is still in its infancy, minimal guidelines are required. Though these guidelines are based on semiquantitative data, they should stimulate debate on their utility. This framework will be revised biennially, as knowledge on the subject increases

    Maternal Methyl Donors Supplementation during Lactation Prevents the Hyperhomocysteinemia Induced by a High-Fat-Sucrose Intake by Dams

    Get PDF
    Maternal perinatal nutrition may program offspring metabolic features. Epigenetic regulation is one of the candidate mechanisms that may be affected by maternal dietary methyl donors intake as potential controllers of plasma homocysteine levels. Thirty-two Wistar pregnant rats were randomly assigned into four dietary groups during lactation: control, control supplemented with methyl donors, high-fat-sucrose and high-fat-sucrose supplemented with methyl donors. Physiological outcomes in the offspring were measured, including hepatic mRNA expression and global DNA methylation after weaning. The newborns whose mothers were fed the obesogenic diet were heavier longer and with a higher adiposity and intrahepatic fat content. Interestingly, increased levels of plasma homocysteine induced by the maternal high-fat-sucrose dietary intake were prevented in both sexes by maternal methyl donors supplementation. Total hepatic DNA methylation decreased in females due to maternal methyl donors administration, while Dnmt3a hepatic mRNA levels decreased accompanying the high-fat-sucrose consumption. Furthermore, a negative association between Dnmt3a liver mRNA levels and plasma homocysteine concentrations was found. Maternal high-fat-sucrose diet during lactation could program offspring obesity features, while methyl donors supplementation prevented the onset of high hyperhomocysteinemia. Maternal dietary intake also affected hepatic DNA methylation metabolism, which could be linked with the regulation of the methionine-homocysteine cycle

    Holistic Integration of Omics Tools for Precision Nutrition in Health and Disease

    No full text
    The combination of multiple omics approaches has emerged as an innovative holistic scope to provide a more comprehensive view of the molecular and physiological events underlying human diseases (including obesity, dyslipidemias, fatty liver, insulin resistance, and inflammation), as well as for elucidating unique and specific metabolic phenotypes. These omics technologies include genomics (polymorphisms and other structural genetic variants), epigenomics (DNA methylation, histone modifications, long non-coding RNA, telomere length), metagenomics (gut microbiota composition, enterotypes), transcriptomics (RNA expression patterns), proteomics (protein quantities), and metabolomics (metabolite profiles), as well as interactions with dietary/nutritional factors. Although more evidence is still necessary, it is expected that the incorporation of integrative omics could be useful not only for risk prediction and early diagnosis but also for guiding tailored dietary treatments and prognosis schemes. Some challenges include ethical and regulatory issues, the lack of robust and reproducible results due to methodological aspects, the high cost of omics methodologies, and high-dimensional data analyses and interpretation. In this review, we provide examples of system biology studies using multi-omics methodologies to unravel novel insights into the mechanisms and pathways connecting the genotype to clinically relevant traits and therapy outcomes for precision nutrition applications in health and disease
    corecore