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Omar Ramos-Lopez1,2†, Jose I. Riezu-Boj1,3†, Fermin I. Milagro1,4, M. Angeles Zulet1,3,4, Jose L. Santos5,
J. Alfredo Martinez1,3,4,6* and MENA project
Abstract

Background: Olfaction is an important sense influencing food preferences, appetite, and eating behaviors. This
hypothesis-driven study aimed to assess associations between olfactory pathway gene methylation signatures,
obesity features, and dietary intakes.

Methods: A nutriepigenomic analysis was conducted in 474 adults from the Methyl Epigenome Network
Association (MENA) project. Anthropometric measurements, clinical data, and serum metabolic profiles of the study
population were obtained from structured databases of the MENA cohorts. Habitual dietary intake was assessed
using a validated semiquantitative food frequency questionnaire. DNA methylation was measured in circulating
white blood cells by microarray (Infinium Human Methylation 450 K BeadChips). FDR values (p < 0.0001) were used
to select those CpGs that showed the best correlation with body mass index (BMI) and waist circumference (WC).
Pathway analyses involving the characterization of genes involved in the olfactory transduction system were
performed using KEGG and pathDIP reference databases.

Results: Overall, 15 CpG sites at olfactory pathway genes were associated with BMI (p < 0.0001) and WC (p < 0.0001)
after adjustments for potential confounding factors. Together, methylation levels at the15 CpG sites accounted for 22%
and 20% of the variability in BMI and WC (r2 = 0.219, p < 0.001, and r2 = 0.204, p < 0.001, respectively). These genes
encompassed olfactory receptors (OR4D2, OR51A7, OR2T34, and OR2Y1) and several downstream signaling molecules
(SLC8A1, ANO2, PDE2A, CALML3, GNG7, CALML6, PRKG1, and CAMK2D), which significantly regulated odor detection and
signal transduction processes within the complete olfactory cascade, as revealed by pathway enrichment
analyses (p = 1.94 × 10–10). Moreover, OR4D2 and OR2Y1 gene methylation patterns strongly correlated with
daily intakes of total energy (p < 0.0001), carbohydrates (p < 0.0001), protein (p < 0.0001), and fat (p < 0.0001).

Conclusions: The results of this study suggest novel relationships between olfactory pathway gene
methylation signatures, obesity indices, and dietary intakes.
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Background
Obesity epidemic represents one of the most important
health challenges worldwide [1]. It has been estimated
that about 1.9 billion adults present overweight or obes-
ity based on body mass index (BMI), with an overall
prevalence of 39% [2]. Epidemiological studies have
identified high BMI as a risk factor for an expanding set
of chronic diseases including cardiovascular disease, dia-
betes mellitus, non-alcoholic fatty liver disease, and
many types of cancer, with relevant negative economic
and social impacts [3]. At a global level, excessive weight
(BMI ≥ 25) accounted for 4 million deaths (7.2% of
all-cause deaths) and 120 million deaths and disability-
adjusted life years (4.9% of all-cause DALYs) among
adults in 2015 [4].
In general, the overconsumption of energy-dense

foods, coupled with the adoption of a sedentary lifestyle,
is the main environmental factors contributing to the
development of obesity and associated clinical manifes-
tations [5]. Moreover, genetic and epigenetic signatures
play a role in determining individual susceptibility to fat
accumulation [6, 7]. In the past, and until recently, re-
search on obesity has focused on characterizing the bio-
logical factors that predispose people to excessive food
intake and associated weight gain [8]. In this context, it
has been reported that sensorial modalities, including
taste and olfaction [9], may influence food preferences
and eating behaviors.
In particular, olfactory ability is related to perceived

food palatability [10] and may be modulated by hunger/
satiety states [11, 12]. Also, exposure to food odors in-
creases appetite for products with similar characteristics
in terms of taste and energy density [13]. Indeed, a link
between dietary intake and olfactory sensitivity to fat
was found [14], although another study did not find
changes in energy intake or food preferences in response
to odors exposure in women [15]. In addition, fluctua-
tions in the internal levels of carbohydrates, amino acids,
and fats could modulate olfactory sensitivity to adjust
feeding behaviors in order to maintain nutrient homeo-
stasis [16].
Odor perception during eating depends on the inter-

action between olfactory and gustatory systems [17]. Be-
sides physiological issues (i.e., age, circadian rhythmicity,
endocrine secretions), sensory variability can be also
driven by genetic and epigenetic marks, which in turn
can impact food consumption and subsequent health
outcomes [18]. Associations between taste receptors
polymorphisms, dietary intakes, lipid disorders, and liver
disease in Mexican subjects were reported [19–22]. Like-
wise, sequence variants in olfactory receptor genes ap-
peared to contribute to the predisposition to extreme
obesity [23, 24] and influenced eating behaviors and adi-
posity levels [25]. Additionally, DNA methylation
patterns at sweet taste pathway genes were associated
with BMI and carbohydrate intake in an adult popula-
tion [26]. Together, these findings suggest the involve-
ment of sensory factors, including olfaction, in appetite
regulation and obesity predisposition, where epigenetics
may play a crucial role. This hypothesis-driven study
aimed to assess associations between olfactory pathway
gene methylation signatures, obesity features, and diet-
ary intakes.
Materials and methods
Subjects
A nutriepigenomic analysis was conducted in an adult
population from the Methyl Epigenome Network Asso-
ciation (MENA) project (n = 474), which is constituted
by previous clinical trials [27–34]. The study protocol,
data confidentiality, and research procedures were in
accordance with the ethical principles on human experi-
mentation stipulated in the 2013 Declaration of Helsinki
by the World Medical Association [35].
Study variables
Anthropometric measurements, clinical data, and serum
metabolic profiles of the study population were obtained
from structured databases of the MENA cohorts. These
variables included weight, height, waist circumference
(WC), systolic blood pressure (SBP), diastolic blood
pressure (DBP), glucose, insulin, total cholesterol,
high-density lipoprotein cholesterol (HDL-c), low-
density lipoprotein cholesterol (LDL-c), and triglycer-
ides. BMI was calculated as the ratio between weight
(kg) and height (m2). Insulin resistance was estimated by
the homeostatic model assessment-insulin resistance
(HOMA-IR) index using the following formula:
HOMA-IR = fasting insulin (mU/L) X plasma glucose
(mmol/L)/22.5. Triglyceride-glucose (TyG) index was
calculated as a predictor of diabetes, as described else-
where [36].
Dietary assessment
Dietary data was available from 247 subjects of the PRE-
DIMED, RESMENA, and OBEKIT cohorts, which
presented similar characteristics regarding the whole
sample. A validated semiquantitative food frequency
questionnaire [37] was used to assess the habitual con-
sumption of 137 food items during the previous year
according to four frequency categories (daily, weekly,
monthly, or never). The obtained food portions and
serving sizes were further converted to daily energy
(kcal) and macronutrient intakes (g) using the Spanish
food composition tables [38].



Table 1 Demographic, anthropometric, and metabolic
characteristics as well as dietary intake of the whole study
population (n = 474)

Variable Average values

Age (years) 47.2 ± 14.1

Men/women 171/303

Anthropometric and clinical data

Weight (kg) 81.6 ± 19.1

BMI (kg/m2) 30.1 ± 5.6

WC (cm) 95.7 ± 16.1

MAP (mmHg) 100.4 ± 16.2

Metabolic profile

Glucose (mmol/L) 5.7 ± 1.7

Insulin (pmol/L) 66.7 ± 48.6

HOMA-IR index 2.44 ± 2.28

Total cholesterol (mmol/L) 5.3 ± 1.0

Triglycerides (mmol/L) 1.4 ± 0.8

TyG index 4.61 ± 0.32

Dietary intake

Energy (Kcal/day) 2576 ± 759

Carbohydrates (g/day) 260.9 ± 96.8

Protein (g/day) 103.8 ± 28.3

Fat (g/day) 115.3 ± 36.4

Continuous variables are represented as means ± standard deviations. Men
and women are number of cases. BMI body mass index, WC waist
circumference, MAP mean arterial pressure, HOMA-IR index homeostatic model
assessment-insulin resistance index, TyG index triglyceride-glucose index.
Dietary intake was available from 247 subjects
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DNA methylation analyses
Venous blood samples were drawn by venipuncture after
a 12-h overnight fast. White blood cells (WBC) were
separated from whole blood by centrifugation at 3500
rpm, at 4 °C for 15 min, and immediately frozen at − 80 °
C in buffy coat until assay, as described elsewhere [39].
Genomic DNA was isolated from WBC with the Master
Pure kit (Epicentre Biotechnologies, Madison, WI, USA).
Purified DNA was quantified by the PicoGreen® dsDNA
Quantitation Reagent (Invitrogen, Carlsbad, CA, USA).
High-quality DNA samples were modified with sodium
bisulfite by using the EZ-96 DNA Methylation kit (Zymo
Research Corporation, Irvine, CA, USA) according to
the manufacturer’s protocol. Bisulfite-treated DNA sam-
ples were hybridized to Infinium Human Methylation
450 K BeadChips (Illumina, San Diego, CA, USA) and
scanned using the Illumina HiScanSQ system. Image in-
tensities were obtained with the GenomeStudio Methyla-
tion Software Module, v1.9 (Illumina, San Diego, CA,
USA). DNA methylation data pre-processing has been
recently described elsewhere [40]. Briefly, CpG methyla-
tion levels were expressed as β values ranging from 0
(unmethylated) to 1 (methylated) [41], which were
corrected for type I and type II bias applying the peak-
based correction. Data were normalized in R using a cat-
egorical Subset Quantile Normalization method [42].
Probes containing single-nucleotide polymorphisms,
hybridizing to multiple genomic locations, or associated
with X and Y chromosomes were removed from the ana-
lysis. Furthermore, DNA methylation variation explained
due to different cell subtypes was corrected following
the Houseman procedure [43].

Pathway analyses
Pathway mapping of genes involved in olfactory transduc-
tion (map04740) was performed using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) reference
database (http://www.genome.jp/kegg/pathway.html).
Subsequently, pathway enrichment analyses (confidence
level of 99%) were further run in the Pathway Data Integra-
tion Portal (pathDIP) platform, University of Toronto,
Canada (http://ophid.utoronto.ca/pathdip/).

Statistical analyses
Data normality was screened by the Kolmogorov-
Smirnov test. Principal variables including BMI, WC,
energy, and macronutrient intakes were normally dis-
tributed (p > 0.05). Continuous variables were expressed
as means ± standard deviations, while categorical vari-
ables were presented as number of cases and percent-
ages. Statistical analyses were performed in the IBM
SPSS software, version 20 (IBM Inc., Armonk, NY,
USA). A linear regression model (for BMI outcome) was
computed in the LIMMA package for R software, which
was adjusted by age, sex, study cohorts, and DNA
methylation chips. Also, the Benjamini-Hochberg
correction for multiple comparisons was applied. Statis-
tically significant thresholds were based on false discov-
ery rate (FDR) cut-offs (p < 0.05) and B-statistic values
(> 0) for BMI-related analysis. Afterwards, stricter FDR
(p < 0.0001) were used to select those CpGs that showed
the best correlation with BMI. Linear regression analyses
adjusted by age and sex were further performed to
evaluate correlations of methylation values at olfactory
transducing genes with anthropometric (BMI, WC),
metabolic (glucose, insulin, lipid profile, HOMA-IR,
TyG index), and dietary measurements (total energy and
macronutrient intakes). Figure plots showing significant
correlations were created in the GraphPad Prism® pro-
gram, version 6.0C (La Jolla, CA, USA).

Results
Demographic, anthropometric, and metabolic characteris-
tics of the whole study population are reported (Table 1).
Thirty-six percent of subjects were men (n = 171).
Eighty-two percent of the study population presented

http://www.genome.jp/kegg/pathway.html
http://ophid.utoronto.ca/pathdip/


Ramos-Lopez et al. Genes & Nutrition           (2019) 14:11 Page 4 of 10
excessive body weight (n = 390) according to the BMI
classification of the World Health Organization
(BMI ≥ 25 kg/m2). Regarding the reference values, the
metabolic profile of the whole population was charac-
terized by increased blood levels of glucose and total
cholesterol.
The first screening revealed that 61 CpG sites at genes

participating in the olfactory transduction pathway corre-
lated with the BMI (p < 0.05). Out of these, 35 CpGs
showed best correlations with BMI based on stricter FDR
values (p < 0.0001). After performing linear regression
tests adjusted by sex and age, 15 CpG sites still remained
statistically significant. These CpG sites comprised
cg19302979 (SLC8A1), cg02874396 (OR4D2), cg10610428
(ANO2), cg12498094 (SLC8A1), cg07736155 (PDE2A),
cg17283169 (CALML3), cg02849894 (GNG7), cg15102821
(CALML6), cg16401207 (PRKG1), cg00467296 (OR51A7),
cg24609819 (PRKG1), cg13801347 (CAMK2D), cg1581
Table 2 Genomic and statistical data of CpG sites at olfactory pathw

CpG_ID1 Illumina_ID Gene name Gene
symbol

1 cg19302979 Solute carrier family 8 member A1 SLC8A1

2 cg02874396 Olfactory receptor family 4 subfamily D
member 2

OR4D2

3 cg10610428 Anoctamin 2 ANO2

4 cg12498094 Solute carrier family 8 member A1 SLC8A1

5 cg07736155 Phosphodiesterase 2A PDE2A

6 cg17283169 Calmodulin-like 3 CALML3

7 cg02849894 G protein subunit gamma 7 GNG7

8 cg15102821 Calmodulin-like 6 CALML6

9 cg16401207 Protein kinase, cGMP-dependent, type I PRKG1

10 cg00467296 Olfactory receptor family 51 subfamily A
member 7

OR51A7

11 cg24609819 Protein kinase, cGMP-dependent, type I PRKG1

12 cg13801347 Calcium/calmodulin dependent protein
kinase II delta

CAMK2D

13 cg15819352 Calmodulin-like 6 CALML6

14 cg13441213 Olfactory receptor family 2 subfamily T
member 34

OR2T34

15 cg18482656 Olfactory receptor family 2 subfamily Y
member 1

OR2Y1

Data are sorted by FDR values
BMI body mass index, CHR chromosome, FDR false discovery rate, B LIMMA B-statist
1Studied CpG identifier
2CpG locations were mapped using GRCh37 version of the genome from Ensembl p
9352 (CALML6), cg13441213 (OR2T34), and cg18482656
(OR2Y1).
Interestingly, most of the BMI-associated CpGs were

mapped to coding regions (n = 7) or terminal sequences
(n = 2), and only six were located on gene promoters
(Table 2). Together, methylation levels at these 15
CpG sites accounted for 22% of the variability in BMI
(r2 = 0.219, p < 0.001). Illustrative correlations of each
CpG site are reported (Fig. 1). Moreover, methylation
signatures at the aforementioned 15 CpGs also corre-
lated with WC values in a similar way (Fig. 2),
explaining about 20% of variation in WC (r2 = 0.204,
p < 0.001). No statistically significant relationships
between methylation status at olfactory transducing
genes with blood levels of metabolic markers and
blood pressure measurements were found.
Pathway mapping of the BMI-associated genes within

the olfactory transduction cascade is shown (Fig. 3).
ay genes putatively associated with BMI

CHR
position2

Genomic
region

p value FDR B r2

2: 40436843 Body 4.0 ×
10−12

3.2 × 10−09 15.80 0.12

17: 56245848 TSS1500 1.3 ×
10−10

4.4 × 10−08 12.42 0.06

12: 5884295 Body 1.5 ×
10−09

2.7 × 10−07 10.01 0.07

2: 40356782 Body 1.4 ×
10−08

1.4 × 10−
06

7.81 0.05

11: 72354100 TSS1500 1.7 ×
10−08

1.6 × 10−
06

7.65 0.07

10: 5567524 3′UTR 2.1 ×
10−08

2.0 × 10−
06

7.42 0.08

19: 2608971 5′UTR 4.5 ×
10−08

3.4 × 10−06 6.68 0.06

1: 1844801 TSS1500 1.4 ×
10−07

7.6 × 10−
06

5.61 0.05

10: 53182118 Body 1.5 ×
10−07

8.0 × 10−06 5.54 0.05

11: 4928760 1stExon 1.9 ×
10−07

9.7 × 10−06 5.28 0.04

10: 52840377 Body 3.8 ×
10−07

1.6 × 10−05 4.62 0.05

4: 114460056 Body 1.7 ×
10−06

4.7 × 10−05 3.14 0.05

1: 1845940 TSS1500 2.1 ×
10−06

5.4 × 10−05 2.96 0.05

1: 248738754 TSS1500 3.0 ×
10−06

6.9 × 10−05 2.62 0.05

5: 180167965 TSS1500 3.6 ×
10−06

7.9E−05 2.45 0.05

ic from LIMMA

latform
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Fig. 1. Associations between methylation levels (beta values) at olfactory pathway genes and BMI values. a cg19302979, SLC8A1 (b) cg02874396,
OR4D2 (c) cg10610428, ANO2 (d) cg12498094, SLC8A1 (e) cg07736155, PDE2A (f) cg17283169, CALML3 (g) cg02849894, GNG7 (h) cg15102821,
CALML6 (i) cg16401207, PRKG1 (j) cg00467296, OR51A7 (k) cg24609819, PRKG1 (l) cg13801347, CAMK2D (m) cg15819352, CALML6 (n) cg13441213,
and OR2T34 (o) cg18482656, OR2Y1
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Notably, pathway enrichment analysis revealed a signifi-
cant contribution (p = 1.94 × 10−10) of these genes to the
regulation of the olfactory transduction network, which
were involved in odor detection and signal processing in
the nervous system (Fig. 3). These genes included the ol-
factory receptors OR4D2, OR51A7, OR2T34, and OR2Y1
A B C

F G H

K L M

Fig. 2 Associations between methylation levels (beta values) at olfactory p
OR4D2 (c) cg10610428, ANO2 (d) cg12498094, SLC8A1 (e) cg07736155, PDE2
CALML6 (i) cg16401207, PRKG1 (j) cg00467296, OR51A7 (k) cg24609819, PRK
and OR2T34 (o) cg18482656, OR2Y1
and several downstream effectors, such as SLC8A1,
ANO2, PDE2A, CALML3, GNG7, CALML6, PRKG1, and
CAMK2D.
Furthermore, potential associations between olfactory

receptor gene methylation status and dietary intakes
were screened in a subsample of the MENA cohort
D E

I J

N O

athway genes and WC values. a cg19302979, SLC8A1 (b) cg02874396,
A (f) cg17283169, CALML3 (g) cg02849894, GNG7 (h) cg15102821,
G1 (l) cg13801347, CAMK2D (m) cg15819352, CALML6 (n) cg13441213,



Fig. 3 Pathway mapping of BMI-associated genes within the olfactory transduction network (red boxes). The following genes were computed:
SLC8A1, OR4D2, ANO2, PDE2A, CALML3, GNG7, PRKG1, OR51A7, CAMK2D, CALML6, OR2T34, and OR2Y1. Figure taken from KEGG reference database
(map04740). Pathway enrichment analyses, based on pathDIP (p = 1.94 × 10−10)
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(Fig. 4). Notably, methylation at cg02874396 (OR4D2) and
cg18482656 (OR2Y1) strongly correlated with daily intakes
of total energy (p < 0.0001), carbohydrates (p < 0.0001),
protein (p < 0.0001), and fat (p < 0.0001).

Discussion
Olfaction is considered an important sensorial factor in-
fluencing feeding behaviors through modulating food
palatability and appetite [10, 13]. Thus, olfactory disrup-
tions at the phenotypic and molecular levels may affect
food intake and, consequently, individual predisposition
to weight gain and obesity [9]. The current research
shows, apparently for the first time, associations between
different methylation patterns at olfactory pathway genes
and adiposity indicators (BMI and waist circumference),
which were independent of age and sex. These genes
encompassed olfactory receptors (OR4D2, OR51A7,
OR2T34, OR2Y1) and downstream signaling molecules
(SLC8A1, ANO2, PDE2A, CALML3, GNG7, CALML6,
PRKG1, CAMK2D), which significantly regulated odor
detection and signal transduction within the complete
olfactory cascade, as revealed by pathway analyses.
Moreover, OR4D2 and OR2Y1 gene methylation patterns
strongly correlated with daily energy and macronutrient
intakes. The fact that methylation levels at 13 CpG sites
negatively correlated with BMI, and only 3 CpG sites in-
versely positively associated with BMI, apparently reveal
gene-specific profiling of DNA methylation regarding ol-
factory methylation status and obesity. These findings
may contribute to elucidating novel relationships be-
tween olfactory system epigenetics, food consumption,
and body weight homeostasis.
Odorant signal transduction is initiated when vola-

tile odorants (including those emanating from food)
interact with specific olfactory receptors in the nasal
olfactory epithelium, leading to the initial perception
of smell in the brain [44]. It has been reported that
olfactory receptors are also expressed in non-
chemosensory tissues, where they perform multiple
physiological and metabolic functions [45]. The results
found in this research are consistent with the role of
olfactory perception in regulating food intake and en-
ergetic balance, as reported elsewhere [13, 14, 16].
Interestingly, genome-wide association analyses de-
tected copy number variations in olfactory receptor
genes that were associated with early-onset extreme



A B

C D

E F

G H

Fig. 4 Associations between methylation levels (beta values) at olfactory receptors and dietary intakes. a–d cg02874396, OR4D2 (e–h)
cg18482656, OR2Y1
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obesity in humans [23]. Also, predicted damaging mis-
sense variants in olfactory receptor and protocadherin
beta cluster genes were co-localized in subjects with
extreme obesity [24]. Similarly, olfactory receptor gene
polymorphisms showed evidence of an association
with adiposity levels and some eating behaviors, in-
cluding cognitive dietary restraint, susceptibility to
hunger, and eating disinhibition [25].
Regarding odor-evoked transducers, PRKG1, a cGMP-
dependent protein kinase, involved in foraging behavior,
food acquisition, and energy balance, was located within
a variably methylated region associated with BMI in a
human cohort [46]. Until now, the specific roles of
ANO2, CAMK2D, SLC8A1, PDE2A, CALML3, GNG7,
and CALML6 genes in olfactory-related dietary patterns
and obesity in humans have not been apparently
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explored; therefore, further investigation in these re-
search areas is warranted.
Potential relationships between eating patterns, olfac-

tory function, and obesity have also been phenotypically
studied. In this context, consumers of a Western-style
diet (rich in saturated fat and added sugar) presented
poorer odor identification ability, worse fat discrimin-
ation, and hedonic differences in taste and flavor percep-
tion relative to people who consumed a healthier diet
[47]. Of note, an increasing BMI has been associated
with a decrease in olfactory sensitivity [48]. High BMI
was also related to subjective olfactory dysfunction in
obese patients [49]. In addition, an impaired olfactory
capacity has been reported in obese subjects compared
to normal-weight controls [50]. Furthermore, an in-
crease in visceral fat content was associated with a
decrease in olfactory function [51].
To the best of our knowledge, this is a pioneer study

exploring the role of epigenetics of olfaction in obesity.
The strengths of this investigation include the screening
of the whole olfactory transduction pathway and the
relative large number of DNA samples analyzed. More-
over, methylation-related statistical analyses were
adjusted for potential confounding factors such as sex,
age, study cohorts, methylation chips, and cell compos-
ition variability as well as with corrections for multiple
comparisons within the experiments performed in this
study. Instead, the limitations of this study encompass
those inherent to retrospective association studies in-
cluding the inability to explain cause-effect relationships,
the scientific caution concerning the reproducibility of
the findings in other administrative settings having their
own peculiar biases, and the difficulties in distinguishing
between factors related to increased or decreased risk of
developing the disease and those associated with the
course of the illness [52]. Other drawbacks of this study
comprise the exclusion of expression assays (RNA
samples were not available) and the lack of tests evaluat-
ing olfactory function. Also, given the number of
subjects analyzed and the type of study (association) type
I and type II bias cannot be completely excluded despite
the statistical settings. Likewise, some methylation rele-
vant data related to obesity could have not been taken
into account due to the use of rigorous FDR thresholds
in the outcome-related analyses.
Another issue of this study could be the fact that DNA

methylation levels were measured in circulating white
blood cells instead of olfactory tissues. Interestingly, the
expression of some olfactory receptors has been detected
in different blood cells, including OR51A7 in leukocytes
[53]. Also, our results are in accordance with a previous
investigation showing associations between methylation
signatures at sweet taste transducing genes, obesity, and
carbohydrate intake [26]. Additionally, some studies
support that methylation marks in blood cells can mir-
ror those found in other samples, including oral mucosa
[54] and subcutaneous adipose tissue [55], suggesting
the possible use of the methylome in leukocytes for
disease-risk prediction and therapeutic purposes.
In recent years, the implication of different epigenetic

processes in the development of obesity is being exten-
sively investigated [56]. Especially, altered DNA methyla-
tion patterns can trigger changes in gene expression
associated with deregulations of energy homeostasis and
weight gain predisposition [7]. In this manner, genes in-
tegrating the olfactory pathway are susceptible to cova-
lent epigenetic modifications that might lead to odor
perception dysfunction. Establishing an epigenetic basis
for olfactory function may help to understand, at least in
part, relationships between olfaction capacity, food
consumption, and body weight regulation. In turn, this
knowledge may contribute to identify epigenetic bio-
markers to predict the risk of developing excessive
adiposity and associated comorbidities, as well as imple-
ment epigenome-based dietary strategies for prevention,
prognosis, and treatment of obesity within the era of
precision nutrition [57].

Conclusions
The results of this investigation suggest novel relation-
ships between olfactory pathway gene methylation signa-
tures, obesity indices, and dietary intakes.
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