73 research outputs found

    Utilizing Extension as a Resource in Disaster Response: Florida Extension’s Communication Efforts During the 2017 Hurricane Season

    Get PDF
    Crisis communication plays a significant role for the different audiences for which it is designed. Hurricanes and other disasters have resulted in major economic damage and disruption of social norms for extended periods of time in communities across the globe. In such circumstances, the Cooperative Extension Service is often called to take an active role in preparation, response, and recovery. As part of the local emergency management team, local Extension offices are positioned to provide a research base, relevant information, and faculty. As such, citizens often look to Extension faculty members for emergency resources and expertise. However, standard communication methods can be significantly affected in disaster situations. Further, difficulty to fully anticipate such effects can limit Extension’s ability to communicate with targeted audiences and deliver important information. This descriptive study was conducted to examine Florida Extension offices’ and Extension faculty members’ communication efforts and effectiveness during the 2017 hurricane season. The primary methods used by respondents to communicate with subject matter clientele were email, face to face, and phone; the primary method used to communicate with the public was the internet/web. Respondents felt clientele and the public were only moderately aware of Extension’s efforts during the hurricane season. Future research is needed to investigate Extension faculty members’ choice of communication channels, as well as the ability of these channels to convey information to clientele and the public. Future research should also examine the communication channels and information sources used and preferred by clientele and the public during disasters. Such results should be compared to the findings of this study to inform future practice for communication in disasters

    Dam removal enables diverse juvenile life histories to emerge in threatened salmonids repopulating a heterogeneous landscape

    Get PDF
    Human stressors block, eliminate, and simplify habitat mosaics, eroding landscapes’ life history diversity and thus biological resilience. One goal of restoration is to alleviate human stressors that suppress life history diversity, but life history responses to these efforts are still coming into focus. Here, we report life history diversity emerging in threatened salmonids (Oncorhynchus spp.) repopulating the recently undammed Elwha River (WA, United States) in adjacent but environmentally distinct tributaries. The ~20 km tributaries entered the Elwha River <1 km apart, but one had a colder stream temperature regime and swifter waters due to its high, snow-dominated elevation and steep valley gradient (~3%), while the other had a warmer stream temperature regime and slower waters because it drained a lake, was at lower elevation, and had a lower stream gradient (~1.5%). Following the 2012 removal of Elwha Dam, the tributaries’ salmonids generally became more abundant and expressed diverse life histories within and among species. The warmer, low-gradient tributary produced more age-1+ coho salmon while the colder, steeper tributary produced a notably high abundance of steelhead smolts in 2020. Additionally, salmonids exiting the warmer tributary were older and possibly larger for their age class, emigrated ~25 days earlier, and included age-0 Chinook salmon that were larger. Also, assemblage composition varied among years, with the most abundant species shifting between Chinook salmon and coho salmon, while steelhead abundances generally increased but were patchy. These patterns are consistent with a newly accessible, heterogeneous landscape generating life history diversity against the backdrop of patchy recruitment as salmonids—some with considerable hatchery-origin ancestry—repopulate an extirpated landscape. Overall, dam removal appears to have promoted life history diversity, which may bolster resilience during an era of rapid environmental change and portend positive outcomes for upcoming dam removals with similar goals

    Mass drug administration and beyond : how can we strengthen health systems to deliver complex interventions to eliminate neglected tropical diseases?

    Get PDF
    Achieving the 2020 goals for Neglected Tropical Diseases (NTDs) requires scale-up of Mass Drug Administration (MDA) which will require long-term commitment of national and global financing partners, strengthening national capacity and, at the community level, systems to monitor and evaluate activities and impact. For some settings and diseases, MDA is not appropriate and alternative interventions are required. Operational research is necessary to identify how existing MDA networks can deliver this more complex range of interventions equitably. The final stages of the different global programmes to eliminate NTDs require eliminating foci of transmission which are likely to persist in complex and remote rural settings. Operational research is required to identify how current tools and practices might be adapted to locate and eliminate these hard-to-reach foci. Chronic disabilities caused by NTDs will persist after transmission of pathogens ceases. Development and delivery of sustainable services to reduce the NTD-related disability is an urgent public health priority. LSTM and its partners are world leaders in developing and delivering interventions to control vector-borne NTDs and malaria, particularly in hard-to-reach settings in Africa. Our experience, partnerships and research capacity allows us to serve as a hub for developing, supporting, monitoring and evaluating global programmes to eliminate NTDs

    Likely Health Outcomes for Untreated Acute Febrile Illness in the Tropics in Decision and Economic Models; A Delphi Survey

    Get PDF
    BACKGROUND: Modelling is widely used to inform decisions about management of malaria and acute febrile illnesses. Most models depend on estimates of the probability that untreated patients with malaria or bacterial illnesses will progress to severe disease or death. However, data on these key parameters are lacking and assumptions are frequently made based on expert opinion. Widely diverse opinions can lead to conflicting outcomes in models they inform. METHODS AND FINDINGS: A Delphi survey was conducted with malaria experts aiming to reach consensus on key parameters for public health and economic models, relating to the outcome of untreated febrile illnesses. Survey questions were stratified by malaria transmission intensity, patient age, and HIV prevalence. The impact of the variability in opinion on decision models is illustrated with a model previously used to assess the cost-effectiveness of malaria rapid diagnostic tests. Some consensus was reached around the probability that patients from higher transmission settings with untreated malaria would progress to severe disease (median 3%, inter-quartile range (IQR) 1-5%), and the probability that a non-malaria illness required antibiotics in areas of low HIV prevalence (median 20%). Children living in low transmission areas were considered to be at higher risk of progressing to severe malaria (median 30%, IQR 10-58%) than those from higher transmission areas (median 13%, IQR 7-30%). Estimates of the probability of dying from severe malaria were high in all settings (medians 60-73%). However, opinions varied widely for most parameters, and did not converge on resurveying. CONCLUSIONS: This study highlights the uncertainty around potential consequences of untreated malaria and bacterial illnesses. The lack of consensus on most parameters, the wide range of estimates, and the impact of variability in estimates on model outputs, demonstrate the importance of sensitivity analysis for decision models employing expert opinion. Results of such models should be interpreted cautiously. The diversity of expert opinion should be recognised when policy options are debated

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Comparative costs and activity from a sample of UK clinical trials units

    Get PDF
    Background: The costs of medical research are a concern. Clinical Trials Units (CTUs) need to better understand variations in the costs of their activities. Methods: Representatives of ten CTUs and two grant-awarding bodies pooled their experiences in discussions over 1.5 years. Five of the CTUs provided estimates of, and written justification for, costs associated with CTU activities required to implement an identical protocol. The protocol described a 5.5-year, nonpharmacological randomized controlled trial (RCT) conducted at 20 centres. Direct and indirect costs, the number of full time equivalents (FTEs) and the FTEs attracting overheads were compared and qualitative methods (unstructured interviews and thematic analysis) were used to interpret the results. Four members of the group (funding-body representatives or award panel members) reviewed the justification statements for transparency and information content. Separately, 163 activities common to trials were assigned to roles used by nine CTUs; the consistency of role delineation was assessed by Cohen's Îș. Results: Median full economic cost of CTU activities was ÂŁ769,637 (range: ÂŁ661,112 to ÂŁ1,383,323). Indirect costs varied considerably, accounting for between 15% and 59% (median 35%) of the full economic cost of the grant. Excluding one CTU, which used external statisticians, the total number of FTEs ranged from 2.0 to 3.0; total FTEs attracting overheads ranged from 0.3 to 2.0. Variation in directly incurred staff costs depended on whether CTUs: supported particular roles from core funding rather than grants; opted not to cost certain activities into the grant; assigned clerical or data management tasks to research or administrative staff; employed extensive on-site monitoring strategies (also the main source of variation in non-staff costs). Funders preferred written justifications of costs that described both FTEs and indicative tasks for funded roles, with itemised non-staff costs. Consistency in role delineation was fair (Îș = 0.21-0.40) for statisticians/data managers and poor for other roles (Îș < 0.20). Conclusions: Some variation in costs is due to factors outside the control of CTUs such as access to core funding and levels of indirect costs levied by host institutions. Research is needed on strategies to control costs appropriately, especially the implementation of risk-based monitoring strategies

    Comprehensive genetic analysis of the human lipidome identifies loci associated with lipid homeostasis with links to coronary artery disease

    Get PDF
    We integrated lipidomics and genomics to unravel the genetic architecture of lipid metabolism and identify genetic variants associated with lipid species putatively in the mechanistic pathway for coronary artery disease (CAD). We quantified 596 lipid species in serum from 4,492 individuals from the Busselton Health Study. The discovery GWAS identified 3,361 independent lipid-loci associations, involving 667 genomic regions (479 previously unreported), with validation in two independent cohorts. A meta-analysis revealed an additional 70 independent genomic regions associated with lipid species. We identified 134 lipid endophenotypes for CAD associated with 186 genomic loci. Associations between independent lipid-loci with coronary atherosclerosis were assessed in ∌ 456,000 individuals from the UK Biobank. Of the 53 lipid-loci that showed evidence of association (P \u3c 1 × 10−3), 43 loci were associated with at least one lipid endophenotype. These findings illustrate the value of integrative biology to investigate the aetiology of atherosclerosis and CAD, with implications for other complex diseases

    Ebola virus epidemiology, transmission, and evolution during seven months in Sierra Leone

    Get PDF
    The 2013-2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers
    • 

    corecore