169 research outputs found

    Meta-analysis of HNF1A-MODY3 variants among human population

    Get PDF
    BACKGROUND : Previously, numerous case-control studies have highlighted variants responsible for Maturity onset diabetes of young (MODY). However, these studies have been conducted among diverse populations and hence yielded contradictory results. We, therefore, performed a meta-analysis to precisely find the association of SNPs with the disease for the HNF1A gene. OBJECTIVE : Meta-analysis of clinically defined studies deciphering mutations in the HNF1A gene responsible for the development of MODY3 was conducted among various populations to determine associations using statistical approaches. METHODS : The curation of 505 research articles published between the years 2000–2021 was carried out. Visualization of data-related protocols and statistical-analysis were conducted, which led to the identification of highly prevalent mutations among different populations (majorly Europe). Further comparison between the frequencies of the control (healthy population) and test (diseased population) dataset generated through curation was performed. RESULTS : We identified nine MODY3 mutations (rs587776825, rs1169288, rs1800574, rs2464196, rs137853244, rs137853238, rs587780357, rs137853240 and rs137853243) at the genome-wide significance level ( p < 5.0 × 10−8). The present study confirmed that the data does not follow a normal distribution. Further, the data was confirmed to be a more homogenous type with frequencies having a significant association with the disease. CONCLUSION : This meta-analysis found significant associations of mutations in HNF1A with MODY3, consistent with previous studies. Our findings should help elucidate the mutations in a compiled form responsible for causing MODY3.https://link.springer.com/journal/40200hj2023Consumer ScienceFood Scienc

    REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants

    Get PDF
    Supplemental Data Supplemental Data include one figure and five tables and can be found with this article online at http://dx.doi.org/10.1016/j.ajhg.2016.08.016. Supplemental Data Document S1. Figure S1 and Tables S1–S5 Download Document S2. Article plus Supplemental Data Download Web Resources ClinVar, https://www.ncbi.nlm.nih.gov/clinvar/ dbNSFP, https://sites.google.com/site/jpopgen/dbNSFP Human Gene Mutation Database, http://www.hgmd.cf.ac.uk/ REVEL, https://sites.google.com/site/revelgenomics/ SwissVar, http://swissvar.expasy.org/ The vast majority of coding variants are rare, and assessment of the contribution of rare variants to complex traits is hampered by low statistical power and limited functional data. Improved methods for predicting the pathogenicity of rare coding variants are needed to facilitate the discovery of disease variants from exome sequencing studies. We developed REVEL (rare exome variant ensemble learner), an ensemble method for predicting the pathogenicity of missense variants on the basis of individual tools: MutPred, FATHMM, VEST, PolyPhen, SIFT, PROVEAN, MutationAssessor, MutationTaster, LRT, GERP, SiPhy, phyloP, and phastCons. REVEL was trained with recently discovered pathogenic and rare neutral missense variants, excluding those previously used to train its constituent tools. When applied to two independent test sets, REVEL had the best overall performance (p < 10−12) as compared to any individual tool and seven ensemble methods: MetaSVM, MetaLR, KGGSeq, Condel, CADD, DANN, and Eigen. Importantly, REVEL also had the best performance for distinguishing pathogenic from rare neutral variants with allele frequencies <0.5%. The area under the receiver operating characteristic curve (AUC) for REVEL was 0.046–0.182 higher in an independent test set of 935 recent SwissVar disease variants and 123,935 putatively neutral exome sequencing variants and 0.027–0.143 higher in an independent test set of 1,953 pathogenic and 2,406 benign variants recently reported in ClinVar than the AUCs for other ensemble methods. We provide pre-computed REVEL scores for all possible human missense variants to facilitate the identification of pathogenic variants in the sea of rare variants discovered as sequencing studies expand in scale

    Mendelian randomisation study of smoking exposure in relation to breast cancer risk

    Get PDF
    Background Despite a modest association between tobacco smoking and breast cancer risk reported by recent epidemiological studies, it is still equivocal whether smoking is causally related to breast cancer risk. Methods We applied Mendelian randomisation (MR) to evaluate a potential causal effect of cigarette smoking on breast cancer risk. Both individual-level data as well as summary statistics for 164 single-nucleotide polymorphisms (SNPs) reported in genome-wide association studies of lifetime smoking index (LSI) or cigarette per day (CPD) were used to obtain MR effect estimates. Data from 108,420 invasive breast cancer cases and 87,681 controls were used for the LSI analysis and for the CPD analysis conducted among ever-smokers from 26,147 cancer cases and 26,072 controls. Sensitivity analyses were conducted to address pleiotropy. Results Genetically predicted LSI was associated with increased breast cancer risk (OR 1.18 per SD, 95% CI: 1.07-1.30, P = 0.11 x 10(-2)), but there was no evidence of association for genetically predicted CPD (OR 1.02, 95% CI: 0.78-1.19, P = 0.85). The sensitivity analyses yielded similar results and showed no strong evidence of pleiotropic effect. Conclusion Our MR study provides supportive evidence for a potential causal association with breast cancer risk for lifetime smoking exposure but not cigarettes per day among smokers.Peer reviewe

    Combined Associations of a Polygenic Risk Score and Classical Risk Factors With Breast Cancer Risk.

    Get PDF
    We evaluated the joint associations between a new 313-variant PRS (PRS313) and questionnaire-based breast cancer risk factors for women of European ancestry, using 72 284 cases and 80 354 controls from the Breast Cancer Association Consortium. Interactions were evaluated using standard logistic regression and a newly developed case-only method for breast cancer risk overall and by estrogen receptor status. After accounting for multiple testing, we did not find evidence that per-standard deviation PRS313 odds ratio differed across strata defined by individual risk factors. Goodness-of-fit tests did not reject the assumption of a multiplicative model between PRS313 and each risk factor. Variation in projected absolute lifetime risk of breast cancer associated with classical risk factors was greater for women with higher genetic risk (PRS313 and family history) and, on average, 17.5% higher in the highest vs lowest deciles of genetic risk. These findings have implications for risk prevention for women at increased risk of breast cancer

    Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes

    Get PDF
    Stratification of women according to their risk of breast cancer based on polygenic risk scores (PRSs) could improve screening and prevention strategies. Our aim was to develop PRSs, optimized for prediction of estrogen receptor (ER)-specific disease, from the largest available genome-wide association dataset and to empirically validate the PRSs in prospective studies. The development dataset comprised 94,075 case subjects and 75,017 control subjects of European ancestry from 69 studies, divided into training and validation sets. Samples were genotyped using genome-wide arrays, and single-nucleotide polymorphisms (SNPs) were selected by stepwise regression or lasso penalized regression. The best performing PRSs were validated in an independent test set comprising 11,428 case subjects and 18,323 control subjects from 10 prospective studies and 190,040 women from UK Biobank (3,215 incident breast cancers). For the best PRSs (313 SNPs), the odds ratio for overall disease per 1 standard deviation in ten prospective studies was 1.61 (95%CI: 1.57-1.65) with area under receiver-operator curve (AUC) = 0.630 (95%CI: 0.628-0.651). The lifetime risk of overall breast cancer in the top centile of the PRSs was 32.6%. Compared with women in the middle quintile, those in the highest 1% of risk had 4.37- and 2.78-fold risks, and those in the lowest 1% of risk had 0.16- and 0.27-fold risks, of developing ER-positive and ER-negative disease, respectively. Goodness-of-fit tests indicated that this PRS was well calibrated and predicts disease risk accurately in the tails of the distribution. This PRS is a powerful and reliable predictor of breast cancer risk that may improve breast cancer prevention programs.NovartisEli Lilly and CompanyAstraZenecaAbbViePfizer UKCelgeneEisaiGenentechMerck Sharp and DohmeRocheCancer Research UKGovernment of CanadaArray BioPharmaGenome CanadaNational Institutes of HealthEuropean CommissionMinistĂšre de l'Économie, de l’Innovation et des Exportations du QuĂ©becSeventh Framework ProgrammeCanadian Institutes of Health Researc
    • 

    corecore