2,590 research outputs found

    Successful strategies for high participation in three regional healthcare surveys: an observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Regional healthcare facility surveys to quantitatively assess nosocomial infection rates are important for confirming standardized data collection and assessing health outcomes in the era of mandatory reporting. This is particularly important for the assessment of infection control policies and healthcare associated infection rates among hospitals. However, the success of such surveys depends upon high participation and representativeness of respondents.</p> <p>Methods</p> <p>This descriptive paper provides methodologies that may have contributed to high participation in a series of administrative, infection control, and microbiology laboratory surveys of all 31 hospitals in a large southern California county. We also report 85% (N = 72) countywide participation in an administrative survey among nursing homes in this same area.</p> <p>Results</p> <p>Using in-person recruitment, 48% of hospitals and nursing homes were recruited within one quarter, with 75% recruited within three quarters.</p> <p>Conclusions</p> <p>Potentially useful strategies for successful recruitment included in-person recruitment, partnership with the local public health department, assurance of anonymity when presenting survey results, and provision of staff labor for the completion of detailed survey tables on the rates of healthcare associated pathogens. Data collection assistance was provided for three-fourths of surveys. High compliance quantitative regional surveys require substantial recruitment time and study staff support for high participation.</p

    The effective Lagrangian of dark energy from observations

    Get PDF
    Using observational data on the expansion rate of the universe (H(z)) we constrain the effective Lagrangian of the current accelerated expansion. Our results show that the effective potential is consistent with being flat i.e., a cosmological constant; it is also consistent with the field moving along an almost flat potential like a pseudo-Goldstone boson. We show that the potential of dark energy does not deviate from a constant at more than 6% over the redshift range 0 < z < 1. The data can be described by just a constant term in the Lagrangian and do not require any extra parameters; therefore there is no evidence for augmenting the number of parameters of the LCDM paradigm. We also find that the data justify the effective theory approach to describe accelerated expansion and that the allowed parameters range satisfy the expected hierarchy. Future data, both from cosmic chronometers and baryonic acoustic oscillations, that can measure H(z) at the % level, could greatly improve constraints on the flatness of the potential or shed some light on possible mechanisms driving the accelerated expansion. Besides the above result, it is shown that the effective Lagrangian of accelerated expansion can be constrained from cosmological observations in a model-independent way and that direct measurements of the expansion rate H(z) are most useful to do so.Comment: 9 pages, 3 figures, JCAP submitted. This paper presents a reconstruction of the dark energy potential. It is a companion to Moresco et al. 2012a, which presents new H(z) results and Moresco et al. 2012b, which provides cosmological parameter constraint

    NMSSM Interpretation of the Galactic Center Excess

    Get PDF
    We explore models for the GeV Galactic Center Excess (GCE) observed by the Fermi Telescope, focusing on χχ→ƒƒ(bar) annihilation processes in the Z3 NMSSM. We begin by examining the requirements for a simplified model (parametrized by the couplings and masses of dark matter (DM) and mediator particles) to reproduce the GCE via χχ→ƒƒ^bar, while simultaneously thermally producing the observed relic abundance. We apply the results of our simplified model to the Z_3 NMSSM for Singlino/Higgsino~(S/H) or Bino/Higgsino~(B/H) DM. In the case of S/H DM, we find that the DM must be be very close to a pseudoscalar resonance to be viable, and large tan β and positive values of μ are preferred for evading direct detection constraints while simultaneously obtaining the observed Higgs mass. In the case of B/H DM, by contrast, the situation is much less tuned: annihilation generally occurs off-resonance, and for large tan β direct detection constraints are easily satisfied by choosing μ sufficiently large and negative. The B/H model generally has a light, largely MSSM-like pseudoscalar with no accompanying charged Higgs, which could be searched for at the LHC

    Where does Cosmological Perturbation Theory Break Down?

    Get PDF
    We apply the effective field theory approach to the coupled metric-inflaton system, in order to investigate the impact of higher dimension operators on the spectrum of scalar and tensor perturbations in the short-wavelength regime. In both cases, effective corrections at tree-level become important when the Hubble parameter is of the order of the Planck mass, or when the physical wave number of a cosmological perturbation mode approaches the square of the Planck mass divided by the Hubble constant. Thus, the cut-off length below which conventional cosmological perturbation theory does not apply is likely to be much smaller than the Planck length. This has implications for the observability of "trans-Planckian" effects in the spectrum of primordial perturbations.Comment: 25 pages, uses FeynM

    Higgs and Dark Matter Hints of an Oasis in the Desert

    Get PDF
    Recent LHC results suggest a standard model (SM)-like Higgs boson in the vicinity of 125 GeV with no clear indications yet of physics beyond the SM. At the same time, the SM is incomplete, since additional dynamics are required to accommodate cosmological dark matter (DM). In this paper we show that interactions between weak scale DM and the Higgs which are strong enough to yield a thermal relic abundance consistent with observation can easily destabilize the electroweak vacuum or drive the theory into a non-perturbative regime at a low scale. As a consequence, new physics--beyond the DM itself--must enter at a cutoff well below the Planck scale and in some cases as low as O(10 - 1000 TeV), a range relevant to indirect probes of flavor and CP violation. In addition, this cutoff is correlated with the DM mass and scattering cross-section in a parameter space which will be probed experimentally in the near term. Specifically, we consider the SM plus additional spin 0 or 1/2 states with singlet, triplet, or doublet electroweak quantum numbers and quartic or Yukawa couplings to the Higgs boson. We derive explicit expressions for the full two-loop RGEs and one-loop threshold corrections for these theories.Comment: 29 pages, 13 figure

    Selective Estrogen Receptor Modulators: A Potential Option For Non-Binary Gender-Affirming Hormonal Care?

    Get PDF
    Gender dysphoria describes the distress associated with having a gender identity that differs from one’s birth-assigned sex. To relieve this distress, transgender, and gender diverse (henceforth, trans) individuals commonly undergo medical transition involving hormonal treatments. Current hormonal treatment guidelines cater almost exclusively for those who wish to transition from male to female or vice versa. In contrast, there is a dearth of hormonal options for those trans individuals who identify as non-binary and seek an androgynous appearance that is neither overtly male nor female. Though prolonged puberty suppression with gonadotrophin releasing hormone agonists (GnRHa) could in theory be gender-affirming by preventing the development of unwanted secondary sex characteristics, this treatment option would be limited to pre- or peri-pubertal adolescents and likely have harmful effects. Here, we discuss the theoretical use of Selective Estrogen Receptor Modulators (SERMs) for non-binary people assigned male at birth (AMAB) who are seeking an androgynous appearance through partial feminization without breast growth. Given their unique range of pharmacodynamic effects, SERMs may represent a potential gender-affirming treatment for this population, but there is a lack of knowledge regarding their use and potentially adverse effects in this context

    Infinitely many N=2 SCFT with ADE flavor symmetry

    Get PDF
    We present evidence that for each ADE Lie group G there is an infinite tower of 4D N = 2 SCFTs, which we label as D(G, s) with s 08 \u2115, having (at least) flavor symmetry G. For G = SU(2), D(SU(2),s) coincides with the Argyres-Douglas model of type D8+1, while for larger flavor groups the models are new (but for a few previously known examples). When its flavor symmetry G is gauged, D(G,s) contributes to the Yang-Mills beta-function as 8/2(+1) adjoint hypermultiplets. The argument is based on a combination of Type IIB geometric engineering and the categorical deconstruction of arXiv: 1203.6743. One first engineers a class of N = 2 models which, trough the analysis of their category of quiver representations, are identified as asymptotically-free gauge theories with gauge group G coupled to some conformal matter system. Taking the limit gYM \u2192 0 one isolates the matter SCFT which is our D(G, s). \ua9 SISSA 2013

    The ATLAS3D project - XXVII : Cold gas and the colours and ages of early-type galaxies

    Get PDF
    Date of Acceptance: 16/12/2013We present a study of the cold gas contents of the ATLAS3D early-type galaxies, in the context of their optical colours, near-ultraviolet colours and Hβ absorption line strengths. Early-type (elliptical and lenticular) galaxies are not as gas poor as previously thought, and at least 40 per cent of local early-type galaxies are now known to contain molecular and/or atomic gas. This cold gas offers the opportunity to study recent galaxy evolution through the processes of cold gas acquisition, consumption (star formation) and removal. Molecular and atomic gas detection rates range from 10 to 34 per cent in red sequence early-type galaxies, depending on how the red sequence is defined, and from 50 to 70 per cent in blue early-type galaxies. Notably, massive red sequence early-type galaxies (stellar masses >5 × 1010 M⊙, derived from dynamical models) are found to have H I masses up to M(H I)/M* ∼ 0.06 and H2 masses up to M(H2)/M* ∼ 0.01. Some 20 per cent of all massive early-type galaxies may have retained atomic and/or molecular gas through their transition to the red sequence. However, kinematic and metallicity signatures of external gas accretion (either from satellite galaxies or the intergalactic medium) are also common, particularly at stellar masses ≤5 × 1010 M⊙, where such signatures are found in ∼50 per cent of H2-rich early-type galaxies. Our data are thus consistent with a scenario in which fast rotator early-type galaxies are quenched former spiral galaxies which have undergone some bulge growth processes, and in addition, some of them also experience cold gas accretion which can initiate a period of modest star formation activity. We discuss implications for the interpretation of colour–magnitude diagramsPeer reviewedFinal Accepted Versio
    corecore