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We explore models for the GeV Galactic Center excess (GCE) observed by the Fermi Telescope,
focusing on χχ → ff̄ annihilation processes in the Z3 next-to-minimal supersymmetric standard model
(NMSSM). We begin by examining the requirements for a simplified model [parametrized by the couplings
and masses of dark matter (DM) and mediator particles] to reproduce the GCE via χχ → ff̄, while
simultaneously thermally producing the observed relic abundance. We apply the results of our simplified
model to the Z3 NMSSM for singlino/Higgsino (S/H) or bino/Higgsino (B/H) DM. In the case of S/H DM,
we find that the DM must be very close to a pseudoscalar resonance to be viable, and large tan β and
positive values of μ are preferred for evading direct detection constraints while simultaneously obtaining
the observed Higgs mass. In the case of B/H DM, by contrast, the situation is much less tuned: annihilation
generally occurs off resonance, and for large tan β, direct detection constraints are easily satisfied by
choosing μ sufficiently large and negative. The B/H model generally has a light, largely MSSM-like
pseudoscalar with no accompanying charged Higgs, which could be searched for at the LHC.
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I. INTRODUCTION

In recent years, an intriguing excess of ∼1–3 GeV
gamma ray photons has appeared in the Galactic center
[1–4]. This Galactic Center excess (GCE) is approximately
spherically symmetric, with a spatial distribution consistent
with annihilating dark matter (DM) following a Navarro-
Frenk-White profile [5,6]. As is often true of signals from
indirect detection, it is not clear whether the GCE is a hint of
physics beyond the standard model (BSM) or is of astro-
physical origin [7,8]. Given astrophysical uncertainties, it is
worth exploring the DM hypothesis to assess how difficult it
is to build theories which can accommodate the excess.
Given concrete models, one can then make predictions that
can be tested in more controlled environments such as
particle colliders and DM direct detection experiments.
The GCE is well fit by a ∼30–40 GeV DM particle

annihilating directly into bb̄ with a cross section of order
hσvi≃ 2 × 10−26 cm3=s, which is intriguingly close to that
of a thermal relic. Annihilation to ττ̄ can also fit the data,
though not as well and for a lower DM mass of ∼10 GeV.
Already, there has been much work done to understand
possible underlying particle physics models of this DM
interpretation [9–22]. While there is some tension between
the GCE and constraints from antiproton bounds on dark
matter annihilation [23,24], the GCE region remains
allowed for the bb̄ channel for conservative choices of
the propagation model.
Simplified models of DM describing the particles

and interactions undergoing annihilation processes via
χχ → bb̄ are a useful tool for obtaining a handle on the
underlying dynamics of the interaction. Such a process may

be mediated by (colored) t-channel or (neutral) s-channel
particles. The former are strongly constrained by LEP and
LHC data. As a consequence, we focus throughout on
s-channel mediators. As noted in [15,25,26], pseudoscalar
s-channel mediators are well suited because they are not
immediately excluded by direct detection experiments.
Using this simplified model, we can determine the coupling
strengths and masses required to fit all of the experimental
data, including a careful analysis of the relic abundance in
such a theory.
With this simplified model analysis in hand, one can

apply the needed features of the theory to particular models
of DM. Supersymmetric extensions of the standard model
(SM) are a well-motivated class of renormalizable models
which can accommodate a stable DM particle together
with new degrees of freedom to mediate annihilation.
Unfortunately, it is not possible to explain the GCE within
the minimal supersymmetric standard model (MSSM) via
s-channel annihilation through a pseudoscalar.1 The reason
is simple: the GCE requires light DM, but a thermal relic
abundance demands a MSSM pseudoscalar that is too light
to be consistent with existing LHC constraints [27,28].
These constraints are derived from charged Higgs searches
and precision Higgs constraints. Progress can thus be
made by decoupling the pseudoscalar mass from the
charged and CP-even heavy Higgs masses. The simplest
MSSM extension satisfying this requirement is the next-
to-minimal supersymmetric standard model (NMSSM).
The NMSSM is a theoretically well-motivated framework

1Annihilation through t-channel scalars in the MSSM is also
strongly constrained, as we describe in Sec. II below.
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that offers all the necessary elements for neutralino DM
annihilating via χχ → bb̄.
The purpose of this paper is to show that the NMSSM can

indeed generate the GCE via 2 → 2 annihilation while
evading stringent constraints on Higgs phenomenology from
the Large Hadron Collider (LHC) and null results from the
LUX direct detection experiment [29]. Constructing a work-
ing theory—that is, one with thermal relic DM accommo-
dating the GCE and consistent with existing bounds—entails
model building challenges which have not been sufficiently
emphasized in earlier works [11,30,31]. To summarize, the
primary results of this paper are as follows:

(i) An analysis of the simplified model for χχ → bb̄
shows that resonant annihilation can significantly
complicate models for the GCE. In particular,
theories with resonant annihilation predict a large
discrepancy between the annihilation rate today as
compared to the early Universe. Since the observed
GCE annihilation cross section is near that of a
thermal relic, resonant models generically have
difficulty explaining the GCE while maintaining a
thermal relic. As we will show, this difficulty can be
overcome if there is a large hierarchy between the
couplings of the mediating particle to final state
fermions and the DM. Alternatively, the presence of
additional χχ → bb̄ annihilation channels, particu-
larly via the Z boson, can alleviate the tension.

(ii) An analysis of the NMSSM reveals several sur-
mountable model building challenges for explaining
the GCE. There are three main issues. First, a
complete model will often contain a scalar partner
to the pseudoscalar that will mediate dangerous
spin-independent (SI) DM-nucleon scattering.
However, stringent direct detection constraints can
be alleviated if this new scalar is sufficiently heavy
[15], or if there is destructive interference—a.k.a.
blind spots—induced between different SI scattering
processes. Second, many of these models induce
mixing between new scalars and the SM Higgs
boson, modifying SM Higgs decay modes in a
way that may be in conflict with LHC constraints.2

Third, if any component of DM carries electroweak
charges, then Z-mediated p-wave suppressed anni-
hilation in the early Universe can be quite important,
thus offsetting the correlation between the GCE
and the thermal relic cross section, which may be
problematic in models where the abundance is set
via nonresonant annihilation.

(iii) We have identified a parameter space of the Z3

NMSSM which can accommodate the GCE while
simultaneously evading all collider and direct de-
tection constraints. These models are (1) singlino/

Higgsino DM via resonant annihilation through the
pseudoscalar or (2) bino/Higgsino via off-resonant
annihilation through the pseudoscalar. In both cases,
most of the parameter space is accessible at the
next generation of direct detection experiments. The
latter case also provides interesting phenomenologi-
cal consequences for the LHC run II which deserve
further investigation.

For this paper we have used semianalytical methods to
study the relevant parameter space. All couplings and cross
sections were output using CalcHEP 3.4 [33]. We checked
our analytic results thoroughly using micrOMEGAs [34]
and NMSSMTools [35–39] where applicable. Our paper is
organized as follows. In Sec. II we summarize a simplified
model for DM annihilation via a pseudoscalar, enumerating
the conditions needed to accommodate a thermal relic
density simultaneously with the GCE. In Sec. III we present
an analysis of the Z3 NMSSM, detailing characteristics of
the neutralino DM and the required properties of the scalar
and pseudoscalar sectors to give a cosmologically viable
model. We reserve Sec. IV for our conclusions. The full
detailed analytic formulas pertaining to both the general
and the Z3 NMSSM are presented in the appendixes.

II. SIMPLIFIED MODEL ANALYSIS

In this section we present a simplified model for a
thermal relic DM candidate consistent with the GCE.
Throughout, we assume Majorana DM that annihilates
through the hadronic channel, χχ → bb̄, with a DMmass in
the range ∼30–40 GeV, as preferred by the fits in Ref. [6].
One can also consider leptonic annihilation via χχ → ττ̄,
though the fit for this channel is poorer; we will not
consider it further.
A priori, χχ → bb̄ scattering can be mediated via

s-channel or t-channel exchange. If the mediator is in
the t channel, then it must be colored. To accommodate a
thermal relic abundance, the mediator must be quite light,
with mass ∼100 GeV, which is in tension with stringent
LEP and LHC limits on colored particles decaying to DM
particles and b jets, unless the mediator and the DM particle
are very degenerate in mass. For example, neutralino
annihilation via t-channel light (≲100 GeV) sbottom
exchange is highly constrained in the MSSM. Even if
sbottom mixing angles can be tuned to evade stringent LEP
constraints [40], direct limits on colored production of the
heavier sbottom are strong, and not obviously surmount-
able. Furthermore, in the sbottom-neutralino degenerate
case, coannihilation in the early Universe plays an impor-
tant role in setting the relic abundance, requiring different
neutralino annihilation cross sections than those preferred
by the GCE.
Consequently, we restrict ourselves to an s-channel

mediator which is a vector, scalar, or pseudoscalar. In all
cases we consider the case where DM is a Majorana
fermion, resulting in a factor of 4 difference in relevant

2See Ref. [32] for a detailed study of possible exotic decays of
the 125 GeV Higgs.
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cross sections as compared to a Dirac fermion. If the
mediator is a gauge boson or a scalar, then DM annihilation
is p-wave suppressed and thus negligible in the present
day. Thus, we focus on the case where the mediator is a
pseudoscalar, which we denote by a, and which was
considered in Refs. [25,26].
Considering only the coupling to bb̄ needed for the GCE,

the simplified model describing the coupling of a Majorana
DM particle χ to a has the interaction Lagrangian

−Lint ¼ iyaχχaχ̄γ5χ þ iyabbab̄γ5b: ð2:1Þ

Consequently, the entire parameter space of the model is
fixed by the pseudoscalar and DM masses, ma and mχ ,
and the dimensionless Yukawa couplings, yaχχ and yabb.
The present-day DM annihilation cross section is

σvjv¼0 ≃ 3

2π

y2aχχy2abbm
2
χ

ðm2
a − 4m2

χÞ2 þm2
aΓ2

a
; ð2:2Þ

where Γa is the decay width of the pseudoscalar mediator a,

Γa ≃ ma

16π
ðy2aχχ þ 6y2abbÞ: ð2:3Þ

The pseudoscalar a may have decay modes to other light
SM fermions, but these must be chirality suppressed to
satisfy flavor bounds, so we neglect them. As noted in [6],
the DM annihilation cross section inferred from the GCE is
of order σvjv¼0 ≃ 2 × 10−26 cm3=s, which is, remarkably,
within the ballpark of a thermal relic cross section.
Additionally, because a is a pseudoscalar, it cannot mediate
spin-independent DM-nucleon scattering, and thus this
simplified model automatically avoids direct detection
bounds.
Given the observed GCE annihilation cross section, it is

tempting to assume that the same annihilation process also
mediated thermal freeze-out in the early Universe. Such a
setup works well in the case where the annihilation is not
resonant, i.e. when ma and 2mχ are not highly degenerate.
To test this condition it is useful to define a degeneracy
parameter,

δ ¼ j1 − 4m2
χ=m2

aj; ð2:4Þ

which characterizes the proximity of the theory to the
resonant regime. If δ is not very small, then the annihilation
is not resonant, and the GCE and a thermal relic abundance
can be simultaneously accommodated as long as the
product y2aχχy2abb is fixed to an appropriate value:

σv≃ 2 × 10−26 cm3=s

�
yabb
yb

�
2
�
yaχχ
0.6

�
2

×

�
mχ

35 GeV

�
2
�ð120 GeVÞ2 − 4ð35 GeVÞ2

m2
a − 4m2

χ

�
2

;

ð2:5Þ

where yb is the SM bottom quark Yukawa.
However, the story changes substantially if δ ∼ 0, in

which case annihilation is resonant. As is well known [41],
resonant DM annihilation will be substantially different
today as compared to the early Universe. This happens
because of thermal broadening of the resonance during the
process of DM freeze-out. From [41], the resonant anni-
hilation cross section at a given x ¼ mχ=T is

hσvi≃ 3e−xδx3=2δ1=2y2aχχy2abbm
2
χffiffiffi

π
p

m3
aΓa

: ð2:6Þ

Integrating over x gives the relic abundance

Ωh2 ¼ 3.12 × 10−12m3
aΓa

ðGeVÞ2m2
χy2aχχy2abbErfc½

ffiffiffiffiffiffiffi
xfδ

p � ; ð2:7Þ

where xf is the value of x at freeze-out. Plugging the
decay width in Eq. (2.3) into the GCE cross section, in the
limit when the width is controlling the cross section, for
2mχ < ma we find that

σvjv¼0 ∼ 2× 10−26 cm3

�
4m2

χ

m2
a

��
70 GeV
ma

�
2

0
B@ 10−3

yaχχ
yabb

δ
6
þ yabb

yaχχ

1
CA

2

:

ð2:8Þ

Similarly, the relic abundance close to resonance can be
written as

Ωh2 ∼ 0.12

�
m2

a

4m2
χ

��
ma

70 GeV

�
2
�
y−2aχχ þ ðδ=6Þy−2abb

106

�

×

�
Erfc½1.325�
Erfc½ ffiffiffiffiffixfp

δ�
�
: ð2:9Þ

Thus the relic abundance is controlled by the smaller of
yabb and yaχχ

ffiffiffiffiffiffiffiffi
δ=6

p
. On the other hand, present-day DM

annihilation is controlled by the larger of yabb=yaχχ
and yaχχδ=6yabb.
Figure 1 depicts the couplings yaχχ and yabb required to

simultaneously accommodate the observed DM relic abun-
dance and GCE for a fixed DM mass of mχ ∼ 35 GeV.
According to the upper two panels of Fig. 1, a thermal relic
abundance requires that the smaller of yaχχ and yabb be of
order 10−3. Consequently, at least one of the couplings of
the pseudoscalar mediator must be small. On the other
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hand, the GCE annihilation cross section of order σvjv¼0 ∼
10−26 cm3=s demands a ratio of order ∼103 between the
two relevant couplings. In other words, accommodating
the GCE with resonant annihilation requires a large
hierarchy between the couplings of a. The story will
change, however, if there are additional annihilation modes
for the DM.
More than ∼20% away from resonance, Eqs. (2.6)

and (2.7) do not apply, but as expected, σvjv→0 is correlated
in the usual way with Ωh2. To interpolate consistently
between the resonant and nonresonant regimes, we have
implemented this simplified model in micrOMEGAs_3.6.7
[42] to numerically scan over the couplings and mass of the
scalar, fixing σvjv→0 ¼ 2.3 × 10−26 cm3=s and DMmass to
35 GeV. The relic density obtained is shown in the lower
two panels of Fig. 1, with the left panel being obtained

analytically in the resonant regime and the right panel
being the result of a numerical scan, which matches the
analytic results.

III. NMSSM ANALYSIS

We now apply the results of the simplified model in the
previous section to the parameter space of the NMSSM.
In the appendixes, we present our conventions and
analytic formulas, including the scalar and pseudoscalar
masses and couplings to the DM. Throughout this
analysis we restrict ourselves to the Z3 NMSSM, which
has a superpotential

W ¼ λSHuHd þ
1

3
κS3; ð3:1Þ

h2 0.12, xf 25
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FIG. 1 (color online). Upper panels: Couplings yabb and yaχχ required to obtain relic density and GCE through resonant annihilation as
a function of ma=mχ . The left and right panels should be read as a pair, with blue (solid) and red (dashed) curves in the left panel
coupling to the similarly denoted curves in the right panel. In the left panel, either blue (solid) curve can be matched with the single blue
(solid) curve in the right panel, and likewise either red (dashed) curve in the right panel can be matched with the single red (dashed)
curve in the left panel to obtain both the observed relic abundance and the GCE. Lower panels: Allowing ma=mχ to float, the allowed
couplings yabb and yaχχ to obtain both the relic abundance and the GCE are shown, obtained using analytic results (left panel) and the
full numerical scan (right panel). The blue (solid) and red (dashed) curves in the left panel correspond to the similarly denoted curves in
the top two panels. One can see broad agreement between the analytic results and the output of the scan.
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with soft breaking terms

−Lsoft ¼ λAλSHuHd þ
1

3
κAκS3: ð3:2Þ

The Peccei-Quinn symmetry limit is defined as κ → 0.
There is of course more freedom in the general NMSSM,
which gives greater parameter freedom in the scalar
sector to satisfy constraints, but the Z3 NMSSM is
sufficient to study sample cases of viable regions.
As is well known, for sufficiently large values of λ, the

NMSSM Higgs mass can be substantially boosted from its
usual mass range in the MSSM [43,44] without the need for
very heavy stop squarks. However, this mass enhancement
is only effective at small tβ, which we will find to be
important later.
Within the NMSSM, there are three basic phenomeno-

logically viable neutralino identities: singlino, S/H, and
B/H. The pure singlino case is inaccessible in the Z3

NMSSM, as it requires vanishing λ which implies μ ¼ 0.
For the Z3-invariant NMSSM, a light, mostly singlino DM
implies that κ=λ ∼mχ=2μ must be fairly small, since μ ≳
150 GeV from LHC bounds (see Sec. III A). In addition,

when a Higgsino is mixed with a singlino, annihilation
through the Z pole is opened, significantly modifying both
the relic density and current annihilation rate in the relevant
mass range to explain the GCE. Annihilation through the Z
pole can still be a factor even for points maintaining
consistency with the LEP constraints on the invisible width
of the Z, bounding the Higgsino fraction to be small or tβ to
be close to 1 as discussed in detail later in Sec. III A. Since
the Higgsino fraction is set by ðλvu;d=μÞ, this implies that λ
must also be kept fairly small. In the bino/Higgsino case, by
contrast, κ=λ is taken large to decouple the singlino
component. Since κ is bounded by perturbativity con-
straints to be at mostOð1Þ, this forces λ to be much smaller.
Given that κ=λ ≪ 1 in the singlino case, the greatest

challenge is to maintain a healthy CP-even sector. This can
be easily understood upon diagonalizing the Hu;Hd sector
to the ðH; hÞ (approximate) mass eigenstates defined by
hhi ¼ v, hHi ¼ 0 (which correspond to the mass eigen-
states in the MSSM decoupling limit) while keeping the
singlet in the interaction basis.3 We identify h with the
SM-like Higgs and H with the heavier MSSM-like Higgs.
In this basis the CP-even mass matrix is

M2
h ¼

0
BBBBB@

m2
A þ s22βðm2

Z − λ2v2Þ s2βc2βðm2
Z − λ2v2Þ −λvμc2β

�
m2

A
2μ2

s2β þ κ
λ

�
c22βm

2
Z þ λ2v2s22β 2λvμ

�
1 − m2

A
4μ2

s22β − κ
2λ s2β

�
λ2v2s2β

�
m2

As2β
4μ2

− κ
2λ

�
þ κμAκ

λ þ 4κ2μ2

λ2

1
CCCCCA; ð3:3Þ

where tβ ≡ tan β ¼ vu=vd, sβ ≡ sin β, cβ ≡ cos β, c2β ¼
cos 2β, s2β ≡ sin 2β and v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2u þ v2d

q
¼ 174 GeV and

we have omitted the entries below the diagonal for
simplicity. This matrix is related to the interaction eigen-
state mass matrix by a tβ-dependent rotation, and we have
rewritten the parameter Aλ in terms of the usual MSSM
parameter mA as follows:

m2
A ¼ μ

sβcβ

�
Aλ þ

κμ

λ

�
: ð3:4Þ

In the absence of significant mixing between the different
states, the mass of H will be approximately given, as in the
MSSM, by the mass parameter mA.
The problematic element of this matrix is the off-

diagonal h − S term: since mA must be kept fairly large
in order to lift the heavy CP-odd/even masses in accor-
dance with LHC constraints, this mixing term tends to

be large, leading to a tachyonic eigenvalue upon diago-
nalization. Additionally, this mixing can induce sizable
deviations of the SM-like Higgs couplings, rendering it non-
SM-like. This off-diagonal term can, however, be tuned
away by choosing parameters such that m2

A∼4μ2=s22β.
Additional h − S mixing is induced through the off-diagonal
h −H and H − S terms, but this is hierarchically smaller
than mixing induced directly by the off-diagonal h − S term
and it generically evades LHC bounds. Both h − S and
H − S mixing also induce scattering in direct detection
experiments, which are generically sizable for points where
the neutralino couples strongly enough to produce the GCE.
Likewise, the CP-odd mass matrix, in the ðA; SÞ basis, is

M2
P ¼

0
B@m2

A λv
�
m2

A
2μ s2β −

3κμ
λ

�
λ2v2s2β

�
m2

A
4μ2

s2β þ 3κ
2λ

�
− 3κAκμ

λ

1
CA; ð3:5Þ

where A denotes the MSSM pseudoscalar in the absence
of the singlet. The lighter and heavier mass eigenstates will
be denoted by ma and ma2 , respectively. Note that in the
presence of significant mixing between the two states, the

3We will refer to this basis as the ðH; h; SÞ basis, in contrast to
the ðHu;Hd; SÞ interaction basis and the ðH; h; hSÞ mass basis.
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mass of the heavier state, ma2 , can be quite discrepant from
the MSSM pseudoscalar mass parameter mA. Generically,
such significant mixing will exist between the singlet and
MSSM-like component of the lightest pseudoscalar eigen-
state; there is insufficient freedom to remove this mixing
in the Z3 NMSSM, though it may exist in the full NMSSM.
Further, by choosing Aκ, ma can be tuned to desirable
values as needed for annihilating 2 → 2 through the light
CP-odd pseudoscalar.
Our results can be summarized as follows:
(i) For mixed singlino/Higgsino dark matter, annihila-

tion is mediated via the pseudoscalar on resonance in
the GC today, while the relic abundance is set by a
combination of annihilation through the pseudosca-
lar and the Z boson. We will show that off-resonance
annihilation is not possible in this case on account of
the Z pole: our analysis in Sec. II shows that a large
product of couplings is necessary, implying a large
value of λ and correspondingly large Higgsino
fraction. At large tβ, this enhances the Z contribution
to the relic density and may violate Z-pole con-
straints; at small tβ this produces a sizable direct
detection cross section which cannot be tuned away.
In either case, the constraints on the Higgsino
fraction force annihilation near the pseudoscalar
resonance.

(ii) For mixed bino/Higgsino dark matter, contrary to
the S/H case, annihilation must occur off resonance,
unless μ is very large. We will show that the needed
hierarchy of couplings for resonant annihilation
discussed in Fig. 1 cannot be achieved for the B/H
case.

A. Singlino/Higgsino dark matter ðκ=λ ≪ 1Þ
We begin by expanding the components of the neutralino

in the limit κ=λ ≪ 1, so that we can read off the coupling
of the DM to the (mostly singlet) CP-odd scalar which
mediates the annihilation. The full expressions can be
found in Appendix B. We find

N13

N15

∼ −
vλ
μ
cβ

�
1 − tβ

mχ

μ

�
;

N14

N15

∼ −
vλ
μ
sβ

�
1 −

mχ

μtβ

�
;

ð3:6Þ

N15 ∼
�
1þ v2λ2

μ2

�
1þ s2β

mχ

μ

��−1=2
; ð3:7Þ

wheremχ=μ is also taken to be small, and N13, N14 and N15

refer to the Higgsino down, Higgsino up and singlino
components of the lightest neutralino, respectively.
In the S/H scenario, the SM-like Higgs can mix strongly

with the light singletlike Higgs. We will always assume this
mixing is suppressed since it leads to non-SM-like behavior
for the 125 GeV Higgs. As detailed in Appendix D, this

forces mA ∼ 2jμj=s2β which removes the possible MSSM-
type tβ enhancement one could expect for the coupling of
the pseudoscalar to the down-type quarks.
The annihilation of a pair of neutralinos via a pseudo-

scalar proceeds predominantly to bb̄, so that the relevant
quantity of interest is the active part of the mostly singlet
pseudoscalar. Assuming that mA ≫ ma, this component is
given by

Pa;A

Pa;S
∼ −v

λs2β
2μ

; ð3:8Þ

where Pi;j indicates the composition of pseudoscalar mass
eigenstate i (i ¼ a; a2), in terms of the interaction eigen-
states j (j ¼ A; S). The generally larger singlet component
of the lightest pseudoscalar is, upon normalization,

Pa;S ∼
�
1þ λ2v2s22β

4μ2

�−1=2

: ð3:9Þ

We thus find that the couplings of the lightest pseudoscalar
to the DM and the b quarks can be written

gaχχ ∼ i
ffiffiffi
2

p �
κN2

15 − λN13N14

þ λ2v
2μ

s2βðN13cβ þ N14sβÞN15

�
Pa;S; ð3:10Þ

gabb ∼ −i
mbλffiffiffi
2

p
μ
s2βPa;S; ð3:11Þ

where one can see that there is no tβ enhancement in the
couplings. This implies that, as one moves away from
resonance, λ=μ will have to grow substantially to maintain
the required annihilation rate for the GCE.
We also see from Eq. (3.6) that the Higgsino component

may be substantial (unless μ is very large). This generates a
coupling to the Z boson of

gZχχ ¼
mZffiffiffi
2

p
v
ðN2

13 − N2
14Þ; ð3:12Þ

which vanishes in the limit of tβ → 1. Because twice the
mass of the DM in the 2 → 2 annihilation is close to mZ,
annihilation through the Z pole is important for setting the
relic abundance away from tβ ¼ 1. On the other hand, since
annihilation of a Majorana particle through a vector particle
is p-wave suppressed, this annihilation mode is unimpor-
tant in the Universe today. We verified that there is no
destructive interference between the Z and a possibly
resonant (though p-wave suppressed) annihilation via the
singletlike scalar. Therefore, to obtain a GCE, we need the
Z-mediated thermal relic density to not be too large.
We used micrOMEGAs to obtain the value of

gZχχ leading to the observed thermal relic density for
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mχ ¼ 35 GeV via annihilation through the Z pole:
gZχχ ∼ 0.04. The contour corresponding to this coupling
is shown in the λ - μ plane for tβ ¼ 20 in the left panel of
Fig. 2, setting an upper bound on λ for a given value of μ.
The invisible width of the Z gives another constraint

on gZχχ . The partial width of the Z to a pair of neutralinos is
given by

Γ ¼ GFm3
Z

12
ffiffiffi
2

p
π
ðN2

13 − N2
14Þ2
�
1 −

4m2
χ

m2
Z

�
3=2

; ð3:13Þ

and is constrained to be ≲2 MeV [45], yielding
jN2

13 − N2
14jð1 − 4m2

χ=m2
ZÞ3=4 ≲ 0.11. This upper bound is

also shown in Fig. 2 as a function of μ. Since the
dependence of the neutralino composition upon λ and μ
does not change significantly when one extends the Z3

NMSSM to the general NMSSM (see Appendix B), this
requirement extends robustly to the general NMSSM.
While the upper bound from Ωh2 ∼ 0.12 is more con-
straining for mχ ¼ 35 GeV, the bound from the invisible
width of the Z boson becomes more constraining for lighter
dark matter masses, due to the phase space opening.
We further extract the needed λ to obtain the GCE for

a given pseudoscalar mass ma; this is shown in the right
panel of Fig. 2. Given that the coupling of the Z boson and
therefore its contribution to the relic density are fixed by the
Higgsino component of the DM (and hence by λ and μ), we
can see from the right panel of Fig. 2 that the combination
of the GCE plus relic abundance implies that ma is very
close to 2mχ : outside the region denoted by the red (solid)
curve, the thermal cross section from the annihilation via Z
alone would force a too small relic density, so that there
cannot be any additional contribution from the annihilation

via the pseudoscalar. The internal gZχχ ∼ 0.04 line present
for μ ≳ 350 in the right panel is the same solution as the
external pair of lines, and results from the modified values
of λ need to achieve the GCE near resonance.
Even on resonance, to be phenomenologically viable,

the spin-independent direct detection cross section must
evade the stringent LUX bounds for mχ ∼ 35 GeV,
σSI ≲ 10−9 pb. Extracting the SM-like Higgs-only contri-
bution from the general expression presented in
Appendix E, the scattering cross section is

σhSI ≃ λ4
m2

r

πm4
h

�
mpðμs2β −mχÞ

μ2 −m2
χ

�
2

× N2
15

�X
q¼u;d;s

fTq þ
6

27
fTG

�
2

ð3:14Þ

≃ 1.2 × 10−45 cm2 × N2
15

�
μs2β −mχ

μ −mχ

�
2
�

λ

0.2

�
4

×

�
200 GeV
μþmχ

�
2
�
125 GeV

mh

�
4

: ð3:15Þ

While this scattering may be small when tβ is large, when
tβ ¼ 1, this scattering cross section is generally above
current bounds.
Depending on parameters, however, destructive inter-

ference can render the spin-independent scattering cross
section small, and even vanishing. For example, this can
occur for neutralino-DM scattering in the MSSM. Even if
the only exchanged particle is the Higgs, depending on
the admixture of the bino and Higgsino in the DM, the
scattering cross section can identically vanish; i.e. there

�h2 � 0.12,

N13
2 � N14

2 � 0.11

�inv � 2 MeV,

N13
2 � N14

2 � 0.21
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FIG. 2 (color online). Left panel: λ as a function of μ needed to set the relic density via annihilation through the Z. The relic abundance
thus fixes an upper bound on the Higgsino fraction. Right panel: Blue (dashed) curves denote the value of λ needed to obtain the GCE in
the μ versus pseudoscalar massma plane. The red (solid) curve traces out where the Higgsino fraction is such that one obtains the correct
relic abundance via annihilation through the Z alone. As one can see, annihilation must occur very close to resonance to achieve the GCE
under these conditions.
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may be a direct detection blind spot [46]. If multiple
MSSM scalars exist in the spectrum, there may also be
destructive interference due to multiple scalar exchange
channels [47]. A systematic study of blind spots in the
NMSSM does not exist, although blind spots in a broader

class of simplified DM models were considered in [48]. In
the present scenario, blind spots may result from destruc-
tive interference among the exchanged scalar states.
Combining the results in Appendix E, for moderate or
large tβ we have

σSI ≃m2
pm2

r

v2π

	ðFd þ FuÞ
m2

htβ
½λN13tβðN14Sh;s − N15Þ − N15ðλN14 þ κN15Sh;stβÞ�

þ ðFdt2β − FuÞ
m2

Ht
2
β

½λN13ðN14SH;stβ þ N15Þ − N15tβðλN14 þ κN15SH;sÞ�

−
ðFdtβShS;d þ FuShS;uÞ

m2
hS

½N15ðλN14ShS;d − κN15ShS;sÞþλN13ðN15ShS;u þ N14ShS;sÞ�



2

; ð3:16Þ

where Fu¼
P

q¼ufTqþ 4
27
fTG∼0.15;Fd¼

P
q¼d;sfTqþ

2
27
fTG∼0.13. This allows for a 3-way cancellation between

the contributions from hS; h;H, as we will show below.
At large or moderate tβ, the small up and down

components of the singletlike Higgs are related to the
singlet components of the standard and nonstandard heavy
Higgs by

ShS;d ∼ SH;s þ
Sh;s
tβ

; ð3:17Þ

ShS;u ∼ Sh;s −
SH;s

tβ
; ð3:18Þ

where SH;s ∼ λv=μtβ: ð3:19Þ

As mentioned previously, the singlet component of the
SM-like Higgs can be minimized by tuning mA ∼ μtβ,
though this relationship receives relevant radiative correc-
tions which can introduce a nonzero (though small) mixing
angle:

Sh;s ≈
−2λvμϵ

ðm2
h −m2

hS
Þ ; ð3:20Þ

where ϵ parametrizes the departure of this mixing angle
from the tree-level cancellation induced by setting

m2
A ¼ 4μ2

s22β

�
1 −

κ

2λ
s2β − ϵ

�����
ϵ→0

: ð3:21Þ

The singlet-SM-like Higgs mixing is also relevant for the
singletlike Higgs mass, which can be approximated by

m2
hS
∼
M2

hSð2; 2Þ þ δloop −m2
hð1 − S2h;sÞS2h;s

1þ ð1 − S2h;sÞS2h;s
ð3:22Þ

where

M2
hSð2; 2Þ ¼

κμ

λ

�
Aκ þ

4κμ

λ

�
þ λ2v2ð1 − c22βÞ

−
κ2v2

2
s22βc

2
2β −

1

2
κλv2ð2c22β þ 1Þs2β ð3:23Þ

and the dominant contribution to δloop is [49,50]

δloop ∼
λ2μ2

2π2
log

m2
H

μ2
∼
λ2μ2

2π2
log t2β: ð3:24Þ

Using Eqs. (3.6) and (3.17)–(3.19) in Eq. (3.16), the
direct detection cross section is then proportional to (again
in the large tβ limit)

σSI ∝
	�

2

tβ
−
mχ

μ

�
2tβ
m2

h

þ tβ
m2

H

þ 1

m2
hS

�
2Sh;sþ

λv
μ

��
λv
μ2

mχþSh;s

�
2

tβ
−
mχ

μ

�
þ κμ

λ2v

�

2

:

ð3:25Þ

We can see from the above that positive values of μ lead
to suppression of the spin-independent direct detection
cross section. First, we note that μ > 0 has the effect of
reducing the Higgsino component and therefore the dom-
inant contribution due to the SM-like Higgs. Second, since
mH ∼mA ∼ jμjtβ, the direct detection cross section is
further reduced when μ is positive. Therefore, generally,
direct detection bounds do not constrain very strongly the
region of interest in the λ-μ plane.
To verify our analytics, we performed a numerical scan

in the NMSSM parameter space using NMSSMTools 4.2.1,
which in turn runs micrOMEGAs_3.0. The results are
summarized in Fig. 3. A priori, each point in our parameter
space is defined by six parameters: ðλ; κ; Aλ; Aκ; μ; tβÞ. In
Fig. 3, λ and μ are plotted as axes. At each point we have
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fixed tβ ¼ 40, Aκ ¼ −250 GeV, and adjusted Aλ to set ϵ to
zero at tree level [Eq. (3.21)].4 As a result, singlet-Higgs
mixing is only generated from loop effects and is thus
small. For the top and bottom panels, we have fixed κ to
accommodate a DM mass of ∼37 GeV and ∼42 GeV,
respectively, using the tree-level relation in Eq. (B6). The
right panels show the zoomed-in region of interest for the
corresponding DM mass.

At large tβ, the NMSSM coupling λ does not help
to boost the Higgs mass. Consequently, we require a
heavy stop sector to lift the Higgs, as in the MSSM.
Thus, at each point in Fig. 3 we have fixed the stop
masses such that mh ¼ 125 GeV, with At ¼ 0. Both the
singletlike scalar and singletlike pseudoscalar masses
vary in this plane, and the gray shaded regions denote
where one or the other becomes tachyonic, in which
case there is no successful electroweak symmetry break-
ing. The solid black lines in Fig. 3 show contours
where 2mχ ¼ fma; 0.9mag.

FIG. 3 (color online). Results of a numerical scan with micrOMEGAs, fixing mh ∼ 125 GeV, tβ ¼ 40, Aκ ¼ −250 GeV, and Aλ to
remove mixing between the SM-like and singlet Higgses. The green band shows the region of parameter space fitting the GCE:
0.5 < 1026 cm3=s × σvjv→0 < 4; the blue region shows the observed relic abundance; and the red shows the excluded LUX region. We
have fixed κ to accommodate particular values of the DM mass. Upper panels:mχ ∼ 37� 0.5 GeV. Lower panels: mχ ∼ 42� 0.5 GeV.
Consistent with the analytic results shown in Fig. 2, the green strips are centered aroundma ¼ 2mχ , and as λ=μ (controlling the Higgsino
fraction) decreases, the green strips converge closer to resonant annihilation. The blue relic density strip breaks away from the green
GCE line when annihilation through the Z becomes important.

4We verified that this condition renders the 125 GeV Higgs
very SM-like.
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The green shaded region denotes the region roughly
consistent with the GCE, with 0.5 × 10−26 cm3=s <
σvjv→0 < 4 × 10−26 cm3=s. As expected from our analyti-
cal results, this region is composed of two distinct strips
which closely straddle the contour 2mχ=ma ¼ 1. These
strips are relatively wide and further from resonance for
lower values of μ, and they become narrower and closer to
resonance for larger values of μ: both the decrease in the
Higgsino fraction and the decrease in λ produce a reduction
in the aχχ coupling for larger values of μ, thus requiring
more resonant behavior to produce sufficient annihilation.
The blue shaded regions in the plot denote where the

relic density is consistent with the experimentally observed
one within �3σ: 0.1118 < Ωh2 < 0.128. Like the GCE,
there are two blue bands, corresponding to either side of the
resonant point. The blue ribbon that breaks away from the
resonant region and follows constant λ=μ denotes where
the relic density is controlled by annihilation via the Z.
For mχ ∼ 37 GeV, this is in good agreement with what is
shown formχ ¼ 35 GeV in the left panel of Fig. 2. Further,
for mχ ∼ 37 GeV there is a small sliver of parameter space
where the relic density is achieved through resonant
annihilation via the CP-even scalar. This region is not
viable for the GCE because this process is p-wave sup-
pressed in the present day.
As we saw in our discussion of the simplified model,

the regions consistent with a thermal relic and GCE are
disjoint if the only annihilation process is via s-channel
pseudoscalar exchange, and a delicate balance between the
couplings and masses is required to make both GCE and
relic density consistent at the same time. The green and
blue bands are very different in the region 2mχ < ma. The
relic density band is located at 2mχ ∼ 0.9ma, as thermal
averaging allows resonant annihilation in the early
Universe, while the GCE region must be close to resonance
for any enhancement in the annihilation rate.
Meanwhile, the green and blue bands for 2mχ > ma

appear coincident, but do not overlap even when both
appear to merge into the 2mχ > ma contour. The reason is
again the presence of thermal broadening in the early
Universe, which in this case results in more neutralinos
annihilating off resonance and thus pushes the relic line
closer to resonance. However, in the presence of a second
annihilation channel—in particular, via the Z boson—this
changes because another relic annihilation mode is in play.
Consequently, the blue and green bands do cross once the
Z contribution starts to matter. In the left and right panels
of Fig. 3, the thermal relic and GCE bands overlap at
ðλ; μÞ ∼ ð0.33; 200 GeVÞ and ðλ; μÞ ∼ ð0.24; 320 GeVÞ,
respectively. The difference in the values of λ and μ comes
from the slight difference in the DM masses between the
two panels. In the right panel, the DM mass is slightly
larger, and is thus closer to the Z boson resonance,
requiring a larger value of μ to suppress the cross section
to appropriate levels.

We checked that all these points are in agreement with the
recent LHC limits on chargino neutralino direct production.
We find BRðχ02 → χ01ZÞ ∼ 0.4 with micrOMEGAs for the
region of interest. On the other hand, by taking the ATLAS
trilepton search [51] and using the provided simplified
model information on χ02χ

�
1 → W�Zχ01χ

0
1, we found that

for μ ≳ 150 GeV the upper limit on BRðχ02 → χ01ZÞ is
always weaker than 0.4 (which is reached only at
μ ∼ 200 GeV) for the values of DM mass considered here.
The red shaded regions in Fig. 3 are excluded by LUX.

We see clearly that direct detection does not provide a very
stringent constraint on the parameter space. For smaller
values of μ there is a blind spot in the parameter space, at
which the SI direct detection cross section vanishes
identically. At larger values of μ, meanwhile, the SI cross
section falls off. We have verified that the region where
the direct detection cross section is minimized is in very
good agreement with that predicted by Eq. (3.25). Spin-
dependent direct detection results from XENON100 [52]
do not currently place constraints on the parameter space
shown, but LUX spin-dependent results may constrain
larger values of λ.
In principle, one could vary Aκ for any set of parameters

to independently set the pseudoscalar mass via Eq. (C10).
However, we want to show the variation in the cosmologi-
cal quantities of interest with the pseudoscalar mass. Taking
a larger (smaller) value of Aκ would shift the relic density
and GCE contours to the right (left), leading to somewhat
larger (smaller) values of λ and μ.
We now consider the case of tβ ¼ 1. Here, there is no

contribution from the Z to the relic density, and in principle,
one could obtain both consistent GCE and relic density
just from the exchange of the pseudoscalar. However, in
the absence of blind spots, the direct detection cross section
is large through the SM-like Higgs, as can be seen in
Eq. (3.15) and in the left panel of Fig. 4. The right panel,
similar to the right panel of Fig. 2, shows the required
values of λ in thema-μ plane to obtain the GCE. Comparing
the left and right panels of Fig. 4, we can see that without a
significant reduction of the direct detection cross section
from the SM-like Higgs, off-resonance annihilation would
be ruled out by direct detection constraints.
There is no contribution from the heavy MSSM like

nonstandard Higgs to the direct detection cross section.
However, the presence of a nonzero ϵ, leading to mixing
between the singletlike and the SM-like Higgs, allows
an additional contribution from the singletlike Higgs.
Therefore, one can check for blind spots in the region
where the GCE is obtained.
At tβ ¼ 1, the up and down components of the mostly

singletlike Higgs are simply related to the singlet compo-
nent of the SM-like Higgs: ShS;u ∼ ShS;d ∼ Sh;s=

ffiffiffi
2

p
.

Including the contribution from both of these, the SI direct
detection cross section is given by
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σSI ¼
m2

pm2
r

πv2

�X
q¼u;d;s

fTq þ
6

27
fTG

�
2

λ2N4
15

×

	
Sh;s
m2

hS

�
ShS;s

�
κ

λ
−
N2

14

N2
15

�
−

ffiffiffi
2

p
Sh;s

N14

N15

�

−
1

m2
h

�
Sh;s

�
κ

λ
−
N2

14

N2
15

�
þ

ffiffiffi
2

p N14

N15

�

2

: ð3:26Þ

Thus one could tune away the direct detection if

Sh;s
m2

hS

��
κ

λ
−
N2

14

N2
15

�
−

ffiffiffi
2

p
Sh;s

N14

N15

�
∼

ffiffiffi
2

p

m2
h

N14

N15

: ð3:27Þ

This is difficult to satisfy, however, since the light singlet
mass mhS is not independent from all the other parameters.
Specifically, the mixing Sh;s is relevant for its mass, as
mentioned previously. Taking the dominant contribution to
the singlet Higgs mass to scale with λ and an upper bound
on the singlet component of the SM-like Higgs, Sh;s ≲ 0.3,
to be consistent with measured Higgs properties, we find
that λ≲ 0.3 is required in order to achieve the blind spot.
This is challenging for Higgs phenomenology at tβ ¼ 1,
since stop masses of the order of 100 TeV or higher are
required to drive the Higgs mass up to 125 GeV. While an
unpleasant region of parameter space from a UV complete
point of view, this is required by the phenomenology of the
GCE at tβ ¼ 1. Therefore, similar to moderate or large tβ,
even for tβ ¼ 1 we only find a viable solution where
consistency with GCE, relic density, LUX constraints and
SM-like Higgs phenomenology force the allowed param-
eter region to be very close to resonance. We again verified
our analytical results thoroughly with micrOMEGAs and
NMSSMTools.

B. Bino/Higgsino dark matter ðκ=λ ≫ 1Þ
We now turn to the case of DM which is an admixture

of a bino and Higgsino. We first note that in this case, the
CP-even sector is effectively the MSSM Higgs sector since
the singlet mass is driven up by the required large values
of κ=λ and is effectively decoupled. Therefore, the SM-like
Higgs mass is controlled by MSSM-like contributions from
the squarks, and there is no motivation to consider small
values of tβ, which we know are problematic for obtaining a
mass of 125 GeV. Hence, in this section, we will restrict
ourselves to moderate or large values of tβ.
We now find the region of parameter space where bino/

Higgsino DM is viable for the GCE. We first consider
the resonant annihilation case; as demonstrated in Fig. 1 a
large hierarchy in the couplings gaχχ and gabb is needed to
achieve the observed relic abundance and the GCE. We
now show that this hierarchy is not generally present for the
bino/Higgsino case.
Expanding the results in Appendix B in the limit

mχ ≪ μ, the up and down Higgsino and bino parts of
the neutralino can be written as

N13

N11

∼
mZsW
μ

sβ

�
1þ mχ

μtβ

�
;

N14

N11

∼ −
mZsW
μ

cβ

�
1þmχtβ

μ

�
;

N11 ∼
�
1þm2

Zs
2
W

μ2

�−1=2
:

ð3:28Þ

The active part of the mostly singlet pseudoscalar through
which the dark matter annihilates is
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FIG. 4 (color online). Left panel: Contours of the direct detection cross section (in units of 10−45 cm2) in the λ − μ plane, taking the
analytic expressions in Eq. (3.15) and tan β ¼ 1. Right panel: Contours of λ needed to obtain the Galactic Center excess. Comparing
with the left-hand plot, we can see that the annihilation must occur very close to resonance.
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Pa;A

Pa;S
∼ −

λv
2μ

�
s2β − 6

μ2

m2
A

κ

λ

�
∼ 3κ

vμ
m2

A
; ð3:29Þ

leading to

Pa;S ¼
�
1þ 9κ2

v2μ2

m4
A

�−1=2
ð3:30Þ

upon normalization. The coupling of the dark matter to the
lightest pseudoscalar can thus be written

gaχχ ¼ −i
ffiffiffi
2

p �
λN13N14 þmZsWN11ðsβN13 − cβN14Þ

×

�
s2β

λ

2μ
− 3

κμ

m2
A

��
Pa;S;

∼ i3
ffiffiffi
2

p
κ

�
m2

Zs
2
W

m2
A

�
N2

11Pa;S; ð3:31Þ

while the coupling to b quarks becomes

gabb ¼ −i
mbsβκffiffiffi

2
p

μ

�
sβ

λ

κ
−

3μ2

cβm2
A

�
Pa;S ∼ 3iκ

mbffiffiffi
2

p μtβ
m2

A
Pa;S:

ð3:32Þ

Note that in the above, unlike the S/H scenario, mA can be
of order jμj since we no longer have to cancel the singlet
component of the SM-like Higgs. Hence the gabb coupling
and consequently σv are tβ enhanced. The ratio of the
couplings thus becomes

gaχχ
gabb

≃ 2m2
Zs

2
W

μmbtβ
; ð3:33Þ

which is generically Oð1Þ, unless μ is very large. In
addition, since λ is small, the Higgsino components in
the neutralino are now much smaller than in the singlino/
Higgsino case. As a result, the Z funnel does not play an
important role in setting the relic abundance.
We are therefore left to consider the off-resonance

annihilation case, where a working solution is easily
achieved for moderately large κ, and tβ and μ2=m2

A not
too small, as can be seen from Eqs. (3.31) and (3.32).
Utilizing these expressions, together with Eq. (2.2), we find
the results for the GCE shown in Fig. 5. In the left panel
we fix the DM mass to 35 GeV and the pseudoscalar
mass to 60 GeV. For a small fixed value of λ ¼ 0.05, we
show the required values of μ and mA to obtain σvjv→0 ¼
2.3 × 10−26 cm3=s for different values of κ and tβ.
Since we have fixed ma ¼ 60 GeV, we are sufficiently

far from resonance that the usual matching holds between
the thermal cross section for relic density and GCE today.
Therefore, we expect that for this set of parameters, one
would obtain a consistent GCE and relic density in the early
Universe. The right panel shows the same information but
in the ma–mA plane with a fixed value of μ ¼ −600 GeV
and tβ ¼ 10. The hard cutoff for each value of tβ in the left
panel for mA is due to a naive implementation of the LHC
H=A → τþτ− bounds [53], assuming that both mH and ma2
are approximately given by mA. However, note that in this
scenario, there can be significant mixing between the two
pseudoscalars, thereby changing the correlation ofma2 with
mA. On one hand, this could lead to a weakening of these
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FIG. 5 (color online). Left panel: Contours fixing the s-wave annihilation cross section of bino/Higgsino DM to 2.3 × 10−26 cm3=s for
various choices of κ as a function of μ andmA. The dot-dashed lines show the constraints from requiring that the scattering cross section
in direct detection experiments be smaller than 10−45 cm2 (below and to the right is allowed). Right panel: Contours fixing the s-wave
annihilation cross section of bino/Higgsino DM to 2.3 × 10−26 cm3=s for various choices of κ as a function of ma and mA.
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bounds for a given mA, but on the other hand, this could
strengthen them due to the presence of a large active
component in ma. We will discuss this and other relevant
constraints due to Higgs phenomenology in more detail
when we analyze our full numerical results obtained from
micrOMEGAs and NMSSMTools.
The parameter region under consideration is also easily

made compatible with LUX limits. The scattering cross
section for B/H DM through h and H is given by

σSI ≃m2
Zs

2
Wm

2
pm2

r

πv4
N4

11

2
64ðFu

tβ
− FdtβÞ
m2

H

�
N14

N11

cβ þ
N13

N11

sβ

−
λv

mZsW

N13

N11

N14

N11

SH;s

�

−
ðFd þ FuÞ

m2
h

�
N13

N11

cβ −
N14

N11

sβ

�375
2

; ð3:34Þ

∼
m2

pm2
r

πv4
m4

Zs
4
W

μ4
N4

11

�ðFdþFuÞ
m2

h

�
mχþ

2μ

tβ

�
þ Fd

m2
H
μtβ

�
2

;

ð3:35Þ
where in the second approximation we have used tβ ≪ 1
and kept only the leading Higgsino contributions. This is
exactly equivalent to the MSSM direct detection cross
section at large tβ. In this case, opposite to the S/H case,
negative μ tends to suppress the direct detection cross
section [47,54]. This suppression occurs both via the hχχ
coupling and the interplay of h- and H-mediated annihi-
lation diagrams, allowing for significant freedom to evade
direct detection constraints. The relative size of theM1 and
μ terms also suppresses the spin-dependent direct detection
cross section, which is at least 2 orders of magnitude
beyond current bounds [52]. In the left panel of Fig. 5, in
addition to the required values for GCE, we show the
contours where σSI ¼ 10−9 pb for different values of tβ in
the μ −mA plane. To the right of these contours, the direct
detection cross section therefore does not provide a relevant
constraint.
The viable region for bino/Higgsino DM is summarized

in Fig. 6 where we present the results of a full numerical
scan using micrOMEGAs and NMSSMTools. The param-
eter space is set by ðλ; κ; Aκ; μ; tβ;M1; mAÞ. For each point
in the scan, without loss of generality, we have fixed
M1 ¼ 35 GeV, producing the value mχ ≈ 35 GeV favored
by the GCE. We also fix λ ¼ 0.05, which, as can be seen
from the expressions for the pseudoscalar couplings,
does not affect the phenomenology if sufficiently small.
Furthermore, tβ was fixed to 20 and μ andmA were fixed to
−600 GeV and 600 GeV, respectively, sufficiently heavy
to evade direct detection LHC bounds. Therefore, we are
left with two parameters, κ and Aκ, taken as the axes of

Fig. 6. They control the couplings and the lightest pseu-
doscalar mass, respectively, as discussed in Appendix B 2.
We further fix all other soft masses to 1 TeV, with the
exception of the stop sector, where we fix At ¼

ffiffiffi
6

p
mQ3

,
and mQ3

¼ mu3 ¼ 7.5 TeV, resulting in a SM-like Higgs
mass in the range 122–128 GeV across the plane.
As one can see, the GCE allowed regions (green) and the

correct relic density (blue) overlap along two stripes in
the ðκ; AκÞ plane and are close to the regions where 2mχ

and ma differ by about 20%, consistent with off-resonance
conditions discussed in Sec. II.
As can be seen from Eq. (C11), and mentioned pre-

viously, the lightest pseudoscalar has a non-negligible
active component, up to 50% in the region of interest,
rendering it quite MSSM-like. Consequently, this state is
constrained by collider results. If ma is sufficiently light,
decays of the SM-like Higgs into a pair of pseudoscalars are
open, and they significantly modify Higgs coupling mea-
surements. The overall contribution depends on the haa
coupling, which is controlled by λAλ but has subleading
contributions due to κ and Aκ [55]. This excludes much
of the lower branch consistent with the GCE where
ma ≲ 60 GeV, though the bound weakens for κ ≳ 0.55
because the haa coupling becomes sufficiently small.
H=A → τþτ− bounds [53] are also significant, excluding

a portion of the upper branch consistent with the GCE for

FIG. 6 (color online). Results of a numerical scan with M1 ¼
35 GeV μ ¼ −600 GeV, mA ¼ 600 GeV, tβ ¼ 20, λ ¼ 0.05,
122GeV<mh<128GeV, GCE: 0.5<1026 cm3=s×σvjv→0<4,
0.1118 < Ωh2 < 0.128. The green and blue regions show the
parameter space consistent with the GCE and observed relic
density. The black dashed lines show the contours for constant
pseudoscalar massma. Notice that as κ increases, the regions with
the correct relic abundance pull slightly away from resonance, as
expected from our analytical results. The red region is excluded
by A → τþτ− searches at the LHC, while the purple exclusion
comes from modification of SM Higgs rates due to the presence
of the open h → aa channel.
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ma > 90 GeV. Both the pseudoscalars and the heavy scalar
are relevant for this constraint. The heavier pseudoscalar
has a mass of 500 − 700 GeV throughout the plane, which
is sufficiently large that it evades H=A → τþτ− bounds
even without a singlet component to further suppress the
production cross section. This is remarkable because the
mass of the heavier MSSM scalar and charged Higgs is
450 GeV throughout the plane,5 for which H=A → τþτ−
bounds require tβ < 18.8. Thus the bounds are evaded
partially because the NMSSM allows the scalar and
pseudoscalar mass and mixing structures to be decoupled.
Meanwhile, LHC H=A → τþτ− limits on a 90 GeV

MSSM-like pseudoscalar require tβ < 7.19. The produc-
tion cross section is suppressed somewhat due to the singlet
component of the lightest pseudoscalar and the fact that no
CP-even scalar accompanies it, but the MSSM-like com-
ponent is still large enough to result in a strong bound. The
pseudoscalar production cross section scales with t2β, so that
the entire region with ma ≳ 90 GeV in Fig. 6 is excluded
since we set tβ ¼ 20. Increasing mA would reduce the
active admixture of the lightest pseudoscalar, but the GCE
requires keeping the ratio tβ=mA approximately constant so
that this LHC exclusion is quite robust.6 This exclusion is
shown as the red region in Fig. 6. Below ma ∼ 90 GeV
there are no published limits from the LHC, and the LEP
limits from eþe− → hA [56] are too weak to exclude the
region.
In addition, there are flavor constraints coming from

Bs → μþμ−. In general, a suppression of Oð10Þ at the level
of the amplitude may be required at large tβ. This is,
however, easy to achieve. From a low energy point of view,
there are various ways to ensure the consistency of the
models with the measured value [57], even without relaxing
the assumption of minimal flavor violation (MFV) [58].
Cancellations can occur between the wino- and gluino-
mediated contributions against the Higgsino contribution,
depending on the sign of At. Moreover, the wino and gluino
contributions, which depend more strongly on tβ, can be
further suppressed by requiring alignment of the squark
mass matrices in the down sector. All these various options
to ensure consistency with the Bs → μþμ− measurement
may require additional model-building efforts within a
UV-complete model addressing the SUSY flavor problem,
which are beyond the scope of this paper. Therefore, we
will not discuss flavor constraints further.
We would like to stress that the bino/Higgsino case

realizes the original purpose of going to the NMSSM to
relax the relations between the lightest pseudoscalar
mass and the charged/CP-even Higgs masses that were
obstructing a viable GCE model within the MSSM.

The direct detection cross section and two lighter neutral
scalars are very MSSM-like, but the parameter regions
consistent with the GCE and thermal relic density are
possible because the light pseudoscalar has a sizable
component of both the MSSM and the singlet pseudosca-
lars. The viable B/H region with a light and fairly active
pseudoscalar without either a light charged Higgs or a
CP-even non-SM-like Higgs presents interesting challenges
for the LHC run II: Direct searches for a pseudoscalar with
mass ∼60 − 90 GeV and a production cross section sup-
pressed by a factor of OðfewÞ compared to the MSSM may
still reveal a signal in a region left open by LEP due to its
kinematic limits. This region, normally deemed excluded in
the conventional MSSM ðmA; tβÞ plane, requires dedicated
detailed studies of the LHC signatures, which are beyond
the scope of this paper and are left for the future.

IV. SUMMARY AND CONCLUSIONS

We have examined models to explain the GCE with
thermal relic DM, focusing on the χχ → bb̄ annihilation in
supersymmetric models. We have found that while the
MSSM fails to accommodate the GCE due to SM-like
Higgs precision, LHC H� → τν searches and the mass
relations between the pseudoscalar and charged/CP-even
Higgs bosons, viable regions can be found in the Z3

NMSSM. Both singlino/Higgsino and bino/Higgsino DM
can explain the excess.
In the case of singlino/Higgsino DM, the mostly singlet

pseudoscalar is light, and there is an accompanying light
CP-even state. The parameters of the mass matrix must
then be tuned to ensure that the SM-like Higgs does not
pick up a large singlet component, and to keep the other
lightCP-even state mostly singlet. In addition, 2mχ must be
within a few percent of the light pseudoscalar mass ma to
ensure compatibility with both the GCE and the observed
relic abundance.
For the bino/Higgsino case, the situation is much less

tuned: an Oð1Þ value for κ, moderate tβ, and negative μ
of at least several hundred GeV allow one to achieve the
observed GCE and relic abundance well away from any
resonant region without inducing too large of a nucleon
scattering cross section. This closely parallels the would-be
MSSM solution, which works here given the extra freedom
provided in the NMSSM for decoupling the charged/
CP-even and the lightest pseudoscalar Higgs masses.
Given the large MSSM-like fraction of the lightest pseu-
doscalar, up to 50%, this region provides interesting LHC
Higgs phenomenology worth further study. In particular,
extending LHC pseudoscalar Higgs searches below the
current mass threshold of 90 GeV would probe a large
fraction of the parameter space relevant for the GCE.
Because of the peculiar requirements of these 2 → 2

models, one may advocate for looking beyond the 2 → 2
annihilation models into 2 → 4 annihilation. This has
already been considered for the general NMSSM, where

5The significant discrepancy between mA and the heavier
MSSM-like scalar mass is due to radiative corrections.

6Reducing both mA and tβ may allow one to evade the limits,
but it would create more tension in obtaining a SM-like Higgs
with a mass of 125 GeV, as is well known for the MSSM.
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annihilation to decoupled singlet pseudoscalars occurred
in a mostly decoupled hidden sector [11]. Within the Z3

NMSSM the needed spectrum is difficult to achieve
because the parameters needed to obtain a large enough
annihilation rate tend to induce a problematic Higgs sector;
we leave examination of these models for future work.
In conclusion, while achieving the GCE excess via the
MSSM is very difficult, simple viable models exist within
the NMSSM.
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APPENDIX A: GENERAL NMSSM

We follow notations and conventions consistent with
Ref. [55] where the full superpotential and all possible soft
breaking terms for the general NMSSM are detailed. We
present here all the relevant mass matrices and mixing
angles in the general NMSSM before reducing to the Z3

case. Where relevant, we will denote the matrices in the Z3

NMSSM with a subscript. However, we drop this subscript
in the main text since only the Z3 NMSSM is discussed in
detail there. Throughout,

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2u þ v2d

q
¼ 174 GeV; ðA1Þ

tβ ≡ tan β ¼ vu
vd

; ðA2Þ

μ≡ μeff ¼ μþ λs; ðA3Þ

B≡ Beff ¼ Aλ þ κs; ðA4Þ

m̂2
3 ¼ m2

3 þ λμ0s; ðA5Þ

where vu, vd and s are the vacuum expectation values of
Hu, Hd and S, respectively.

APPENDIX B: NEUTRALINO MASSES
AND MIXINGS

The neutralino mass matrix is

M ¼

0
BBBBBB@

M1 0 − g1vdffiffi
2

p g1vuffiffi
2

p 0

M2
g2vdffiffi

2
p − g2vuffiffi

2
p 0

0 −μeff −λvu
0 −λvd

2κsþ μ0

1
CCCCCCA
: ðB1Þ

The lightest mass eigenstate of the neutralino is defined in
terms of its components as

χ ¼ N11
~Bþ N12

~W þ N13
~Hd þ N14

~Hu þ N15
~S: ðB2Þ

The characteristic equation for the neutralinos is, for
mχ ≠ jμj,

0¼−λ2v2
	
ðmχ−M1Þðmχ−M2Þ

�
mχ−2μ

vuvd
v2

�

−
1

2
g22v

2½mχ−M1þðmχ−M2Þtan2θW �



þðmχ−2κs−μ0Þ
	
ðmχ−M1Þðmχ−M2Þðm2

χ−μ2Þ1
2

−
1

2
g22v

2

�
mχþ2μ

vuvd
v2

�
½mχ−M1þðmχ−M2Þtan2θW �



:

ðB3Þ

If we decouple the wino, the above reduces to

0 ¼ −λ2v2
�
ðmχ −M1Þ

�
mχ − 2μ

vuvd
v2

�
−
1

2
g22v

2tan2θW

�

þ ðmχ − 2κs − μ0Þ
�
ðmχ −M1Þðm2

χ − μ2Þ

−
1

2
g22v

2

�
mχ þ 2μ

vuvd
v2

�
tan2θW

�
: ðB4Þ

We will concentrate on two limiting cases for the
composition of the neutralino: the singlino/Higgsino and
the bino/Higgsino.

1. Singlino/Higgsino

(i) General NMSSM: 2 κμ
λ þ μ0 ≪ μ ≪ M1.

Using the characteristic polynomial, and also
decoupling the Bino, we can trade μ0 for the mass
eigenvalue, mχ :
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μ0 ¼ mχ − 2κ
μ

λ
−
λ2v2ðmχ − μs2βÞ

m2
χ − μ2

: ðB5Þ

(ii) Z3 NMSSM: 2 κ
λ ≪ 1.

μ0 ¼ 0 in the Z3 NMSSM; therefore, we can
instead rewrite κ in terms of the mass eigenvaluemχ :

κ ¼ λ

2μ

�
mχ −

λ2v2ðmχ − μs2βÞ
m2

χ − μ2

�
: ðB6Þ

In both cases,

N13

N15

¼ λv
μ2 −m2

χ
cβðtβmχ − μÞ ∼ λv

μ
cβ

�
tβ
mχ

μ
− 1

�
; ðB7Þ

N14

N15

¼ −λv
μ2 −m2

χ
sβ

�
μ −

mχ

tβ

�
∼ −

λv
μ
sβ; ðB8Þ

N15 ¼
�
1þ N2

13

N2
15

þ N2
14

N2
15

�−1=2
: ðB9Þ

2. Bino/Higgsino

(i) General NMSSM: 2 κμ
λ þ μ0 ≫ μ ≫ M1.

(ii) Z3 NMSSM: 2 κ
λ ≫ 1.

In both cases, we decouple the singlino, and therefore M1

can be rewritten in terms of the mass eigenvalue mχ :

M1 ¼ mχ þ
m2

Zs
2
Wðμs2β þmχÞ
μ2 −m2

χ
: ðB10Þ

The components are then given by

N11 ¼
�
1þ N2

13

N2
11

þ N2
14

N2
11

�−1=2
; ðB11Þ

N13

N11

¼ mZsWsβ
μ2 −m2

χ

�
μþmχ

tβ

�
∼
mZsW
μ

sβ; ðB12Þ

N14

N11

¼ −
mZsWcβ
μ2 −m2

χ
ðμþ tβmχÞ ∼ −

mZsW
μ

cβ

�
1þ tβ

mχ

μ

�
:

ðB13Þ

APPENDIX C: CP-ODD MASS MATRIX

ThegeneralCP-oddmassmatrix in the ðA; SÞ “interaction”
basis is given by

M2
P ¼

0
B@

2ðμBþm̂2
3
Þ

s2β
λðAλ − 2 κμ

λ − μ0Þv
− 3κμAκ

λ þ λ2v2
2μ s2βðBþ 3κμ

λ þ μ0Þ − ξFð4κ þ λμ0
μ Þ − κμμ0

λ − 2m02
s

1
CA: ðC1Þ

Defining m2
A as the (1,1) element of the above matrix: m2

A ¼ 2ðμBþ m̂2
3Þ csc 2β,

M2
P ¼

 
m2

A λðAλ − 2 κμ
λ − μ0Þv

− 3κμAκ
λ þ λ2v2

2μ s2βðAλ þ 4κμ
λ þ μ0Þ − ξFð4κ þ λμ0

μ Þ − κμμ0
λ − 2m02

s

!
: ðC2Þ

Further using the characteristic polynomial for the above, we can redefinem02
s in terms of the lighter mass eigenvaluema

and all the other parameters:

m0
S
2 ¼ −

λ2v2ðAλ − 2 κμ
λ Þ2

2ðm2
A −m2

aÞ
−
m2

a

2
þ
�
Aλ þ 4

κμ

λ

�
λ2v2

4μ
s2β −

3

2
κAκs −

1

2
κμ0sþ 1

2
ξF

�
4κ þ μ0

s

�
þ ξS
2s

: ðC3Þ

In the absence of the singlet, mA would be the usual
MSSM parameter controlling the CP-odd Higgs mass as
well as the CP-even nonstandard Higgs.
In the limit that m2

A ≫ m2
a, the components of a are

given by

Pa;A

Pa;S
≈ −

λv
m2

A

�
Aλ − 2

κμ

λ
− μ0

�
; ðC4Þ

Pa;S ¼
�
1þ P2

a;A

P2
a;S

�−1=2
; ðC5Þ

where Pa;A is the active component and Pa;S is the singlet
component of the light CP-odd Higgs.
If we now take Aλ such that we minimize the mixing with

the SM-like Higgs,
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Pa;A

Pa;S
≈ −

2λv
m2

A

�
μ

s2β
−
�
2
κμ

λ
þ μ0

�
þ ϵ

2

�
: ðC6Þ

In terms of the components given above, the relevant
couplings of the light CP-odd Higgs are

yabb ¼
imbtβffiffiffi

2
p

v
Pa;A; ðC7Þ

yaχχ ¼ if½ðN14cβ − N13sβÞðg1N11 − g2N12Þ
þ

ffiffiffi
2

p
λN15ðN13cβ þ N14sβÞ�Pa;A

þ
ffiffiffi
2

p
ðλN13N14 − κN2

15ÞPa;Sg: ðC8Þ

In the Z3 NMSSM, m3 ¼ 0, and Aλ is no longer a free
parameter but is related to mA via Eq. (3.4). The mass
matrix reduces to

M2
PZ3

¼

0
B@m2

A λvðm2
A

2μ s2β −
3κμ
λ Þ

λ2v2s2βðm
2
A

4μ2
s2β þ 3κ

2λÞ − 3κAκμ
λ

1
CA: ðC9Þ

Now, we can use the characteristic polynomial for the
CP-odd mass matrix to rewrite Aκ in terms of ma:

Aκ ¼ −
λ

3κμ

�
m2

a −
λ2v2s2β
2μ

�
m2

As2β
2μ

þ 3κμ

λ

�

−
λ2v2

m2
a −m2

A

�
m2

As2β
2μ

−
3κμ

λ

�
2
�
: ðC10Þ

After further requiring minimal mixing of the SM-like
CP-even scalar with the singlet, the active component of a
is given by

Pa;A

Pa;S
≈ −

λv
m2

A

�
m2

A

2μ
s2β − 3

κμ

λ

�

∼ −
λv
m2

A

�
2μ

s2β
− 4

κμ

λ
þ ϵ

s2β
2μ

�
: ðC11Þ

APPENDIX D: CP-EVEN MASS MATRIX

In the basis ðHd;Hu; SÞ the general mass matrix for the
CP-even scalars is

M2
R ¼

0
BB@

g2v2c2β þ ðμBþ m̂2
3Þtβ ðλ2 − 1

2
g2Þv2s2β − μB− m̂2

3 λð2μvcβ − ðBþ κsþ μ0ÞvsβÞ
ðλ2 − 1

2
g2Þv2s2β − μB− m̂2

3 g2v2sin2βþ ðμBþ m̂2
3Þ cotβ λð2μvsβ − ðBþ κsþ μ0ÞvcβÞ

λð2μvcβ − ðBþ κsþ μ0ÞvsβÞ λð2μvsβ − ðBþ κsþ μ0ÞvcβÞ 1
2
λðAλ þ μ0Þ v2s s2β þ κsðAκ þ 4κsþ 3μ0Þ− ξSþξFμ

0
s

1
CCA:

ðD1Þ

Rotating the upper 2 × 2 matrix by the angle β and replacing M2
A ¼ 2ðμBþ m̂2

3Þ=s2β now gives the mass matrix in the
(H; h; S) basis:

M2
h ¼

0
BB@

m2
A þ s22βðm2

Z − λ2v2Þ s2βc2βðm2
Z − λ2v2Þ −λvc2βðAλ þ 2κμ

λ þ μ0Þ
s2βc2βðm2

Z − λ2v2Þ c22βm
2
Z þ λ2v2s22β 2λvðμ− sβcβðAλ þ 2κμ

λ þ μ0ÞÞ
−λvc2βðAλ þ 2κμ

λ þ μ0Þ 2λvðμ− sβcβðAλ þ 2κμ
λ þ μ0ÞÞ 1

2
ðAλ þ μ0Þ λ2v2μ s2β þ κμ

λ ðAκ þ 4 κμ
λ þ 3μ0Þ− λ

μ ðξS þ ξFμ
0Þ

1
CCA:

ðD2Þ

Note that in the absence of the singlet, the upper
ð2 × 2Þ matrix is the MSSM Higgs mass matrix, and
it is clear that these fields would acquire expectation
values according to hhi ¼ v and hHi ¼ 0, clarifying our
notation.
If we further set Aλ such that the mixing of the singlet

with the SM-like Higgs is ϵ, the off-diagonal terms mixing
with the singlet reduce to

Aλ ¼
2μ

s2β
−
2κμ

λ
− μ0 þ ϵ; ðD3Þ

M2
hð1; 3Þ ¼ λvc2β

�
2μ

s2β
þ ϵ

�
; ðD4Þ

M2
hð2; 3Þ ¼ −λvϵs2β: ðD5Þ

The mass eigenstates are defined in terms of the
components Si;j where i ¼ fH; h; hsg and j ¼ fu; d; sg:

H ¼ SH;dHd þ SH;uHu − SH;sS; ðD6Þ

h ¼ Sh;dHd þ Sh;uHu − Sh;sS; ðD7Þ
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hS ¼ ShS;dHd þ ShS;uHu þ S: ðD8Þ

We will assume that the non-singletlike nonstandard
Higgs H is decoupled from the mostly SM-like Higgs h.
This implies that the up and down components of H and h
are given as in the usual MSSM decoupling limit by

SH;d ¼ Sh;u ≡ cα ¼ sβ; ðD9Þ

SH;u ¼ −Sh;d ≡ −sα ¼ cβ: ðD10Þ

Further, we will always be interested in the case when the
singlet is mostly decoupled from the other two CP-even
Higgses. In such a case, the singlet components of the
standard and the nonstandard Higgses, Sh;s and SH;s, are
related to the up and down components of the mostly
singlet CP-even Higgses, ShS;u and ShS;d:

ShS;d ¼ Sh;scβ þ SH;ssβ; ðD11Þ

ShS;u ¼ Sh;ssβ − SH;scβ: ðD12Þ

In terms of the above components, the relevant couplings
of the mass eigenstates are given by

yhiuu ¼ −
muffiffiffi
2

p
vsβ

Si;u; ðD13Þ

yhidd ¼ −
mdffiffiffi
2

p
vcβ

Si;d; ðD14Þ

yhiχχ ¼ ½ðg1N11 − g2N12ÞN13 þ
ffiffiffi
2

p
λN15N14�Si;d

− ½ðg1N11 − g2N12ÞN14 −
ffiffiffi
2

p
λN15N13�Si;u

þ
ffiffiffi
2

p
ðλN13N14 − κN2

15ÞSi;s: ðD15Þ

When mA is much larger than any of the other mass
scales, the singlet components of the non-singletlike Higgs
are approximately given by

SH;s ≈
λvc2β
m2

A

�
2μ

s2β
þ ϵ

�
; ðD16Þ

Sh;s ≈
−λvϵs2β
m2

h −m2
hS

; ðD17Þ

where mh ∼ 125 GeV is identified with the SM-like Higgs
and mhS is the mass of the singletlike Higgs. The up and
down components of the singletlike Higgs are then given as
follows:

ShS;u ≈
−λvϵsβs2β
m2

h −m2
hS

−
λvcβc2β
m2

A

�
2μ

s2β
þ ϵ

�
∼ −

λμv
m2

A

c2β
sβ

;

ðD18Þ

ShS;d≈
−λvϵcβs2β
m2

h−m2
hS

þλvsβc2β
m2

A

�
2μ

s2β
þϵ

�
∼
λμv
m2

A

c2β
cβ

: ðD19Þ

Decoupling the MSSM-like heavy Higgs H from the
other two, the 2 × 2 reduced mass matrix in the (h; S) basis
is given by

M2
hS ¼

� c22βm
2
Z þ λ2v2s22β −λvϵs2β

−λvϵs2β λ2v2 þ κμ
λ ðAκ þ 4κμ

λ þ 3μ0Þ − κλv2s2β þ λ2v2ϵ
2μ s2β þ λ

μ ðξFμ0 þ ξSÞ

�
: ðD20Þ

Generally, since we want to have minimal mixing of the
singletlikeHiggswith theothers, the (2,2) elementof the above
should approximately give the tree-level mass of hS. The (1,1)
element should similarly correspond to themass of theh. Loop
corrections to thismass should be the usualMSSMcorrections
from the squarks. Sbottoms and staus generally lead to small
(∼few GeV) negative corrections, while one can get large
positive corrections from the stops. Therefore, since we want
thish to correspond to the observed SM-likeHiggs,we always
constrain λ to be such that M2

hSð1; 1Þ≲ 130 GeV.
In the Z3 NMSSM, m3 ¼ 0 and therefore mA and Aλ are

not independent parameters but again related via Eq. (3.4).
In that case, the (1,3), (2,3) and (3,3) elements of the
CP-even mass matrix are as follows:

M2
hZ3

ð1; 3Þ ¼ −λvμc2β
�
m2

A

2μ2
s2β þ

κ

λ

�
; ðD21Þ

M2
hZ3

ð2; 3Þ ¼ 2λvμ

�
1 −

m2
A

4μ2
s22β −

κ

2λ
s2β

�
; ðD22Þ

M2
hZ3

ð3; 3Þ ¼ λ2v2s2β

�
m2

As2β
4μ2

−
κ

2λ

�
þ κμAκ

λ
þ 4κ2μ2

λ2
:

ðD23Þ

When κ=λ is small, the CP-even singlet will generally be
light, and therefore, to minimize mixing of the singlet with
the SM-like Higgs, we need

m2
A ¼ 4μ2

s22β

�
1 −

κ

2λ
s2β − ϵ

�
: ðD24Þ

The above clarifies the limit in which the above
reduction is valid: when 2μ=s2β ≫ κμ=λ the heavy
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non-SM-like Higgs decouples, and with mA ∼ 2jμj=s2β the
SM-like Higgs has a negligible singlet component.
The singlet components of the Higgses are now given as

SH;s ≈ −
λv
2μ

c2βs2β; ðD25Þ

Sh;s ≈
−2λvμϵ

ðm2
h −m2

hS
Þ : ðD26Þ

These correspond to the following up and down com-
ponents of the singlet:

ShS;u ≈
−2λvμϵ

ðm2
h −m2

hS
Þ sβ þ

λv
2μ

c2βs2βcβ; ðD27Þ

ShS;d ≈
−2λvμϵ

ðm2
h −m2

hS
Þ cβ −

λv
2μ

c2βs2βsβ ∼ −
λv
2μ

c2βs2βsβ:

ðD28Þ

Note that when κ=λ ≫ 1, mhS will generically be pushed
up and the singlet Higgs will decouple from the now
MSSM-like CP-even Higgs sector.
The (2,2) element of the reduced (2 × 2) matrix, which in

the limit of zero mixing with the other Higgs should give
the tree-level hS mass, in the Z3 NMSSM is given by

M2
hSZ3

ð2; 2Þ ¼ κμ

λ

�
Aκ þ

4κμ

λ

�
þ λ2v2m2

A

4μ2
ð1 − c22βÞ

× s22β −
κ2μ2v2

m2
A

c22β −
1

2
κλv2ð2c22β þ 1Þs2β:

ðD29Þ

Setting ϵ ∼ 0, (mA ¼ 2μ=s2β), we get

M2
hSZ3

ð2; 2Þ ¼ κμ

λ

�
Aκ þ

4κμ

λ

�
þ λ2v2ð1 − c22βÞ

−
κ2v2

2
s22βc

2
2β −

1

2
κλv2ð2c22β þ 1Þs2β:

ðD30Þ

The above in the large tβ limit, dropping subdominant
terms, is in agreement with the expressions presented in
Refs. [49,50].

APPENDIX E: DIRECT-DETECTION

The spin-independent elastic cross section for a neutra-
lino scattering off a heavy nucleus due to the exchange of
all the Higgses is given by

σSI ¼
4m2

r

π
½Zfp þ ðA − ZÞfn�2 ðE1Þ

wheremr ¼ mNmχ

mNþmχ
,mN is the mass of the nucleus,mχ is the

neutralino mass, and in the decoupling limit,

fp;n ¼
� X

q¼u;d;s

fðp;nÞTq

aq
mq

þ 2

27
fðp;nÞTG

X
q¼c;b;t

aq
mq

�
mðp;nÞ;

ðE2Þ

au ¼
−g2mu

4mWsβ

�
ðg2N12 − g1N11Þ

	
N13

�
−ShS;uShS;d

m2
hS

− sβcβ

�
1

m2
h

−
1

m2
H

��
þ N14

�
s2β
m2

h

þ c2β
m2

H
þ S2hS;u

m2
hS

�


þ
ffiffiffi
2

p
λ

	
N13N14

�
−Sh;ssβ
m2

h

þ SH;scβ
m2

H
þ ShS;uShS;s

m2
hS

�
þN15

�
N14

�
cβsβ

�
1

m2
h

−
1

m2
H

�
þ ShS;dShS;u

m2
hS

�

þN13

�
s2β
m2

h

þ c2β
m2

H
þ S2hS;u

m2
hS

��

−
ffiffiffi
2

p
κN2

15

�
−Sh;ssβ
m2

h

þ SH;scβ
m2

H
þ ShS;uShS;s

m2
hS

��
; ðE3Þ

ad ¼
g2md

4mWcβ

�
ðg2N12 − g1N11Þ

	
N13

�
c2β
m2

h

þ s2β
m2

H
þ S2hS;d

m2
hS

�
− N14

�
ShS;uShS;d

m2
hS

þ cβsβ

�
1

m2
h

−
1

m2
H

��


−
ffiffiffi
2

p
λ

	
N13N14

�
−Sh;scβ
m2

h

−
SH;ssβ
m2

H
þ ShS;dShS;s

m2
hS

�

þN15

�
N14

�
c2β
m2

h

þ s2β
m2

H
þ S2hS;d

m2
hS

�
þ N13

�
cβsβ

�
1

m2
h

−
1

m2
H

�
þ ShS;dShS;u

m2
hS

��


þ
ffiffiffi
2

p
κN2

15

�
−Sh;scβ
m2

h

−
SH;ssβ
m2

H
þ ShS;dShS;s

m2
hS

��
: ðE4Þ
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Note that in the nondecoupling limit, the above reproduces the general formula with the replacement of cβ → −sα and
sβ → cα everywhere except for the common factor. mðp;nÞ is either the proton or the neutron mass. For the respective form
factors for fu; d; sg, we use the default parameters used by micrOMEGAs_3.2 [34,59]:

fpTq
¼ f0.0153; 0.0191; 0.0447g; fnTq

¼ f0.011; 0.0273; 0.0447g: ðE5Þ

Furthermore, fðp;nÞTG ¼ 1 − fðp;nÞTu
− fðp;nÞTd

− fðp;nÞTs
.
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