169 research outputs found

    Hsp27 anti-sense oligonucleotides sensitize the microtubular cytoskeleton of Chinese hamster ovary cells grown at low pH to 42 degrees C-induced reorganization

    Get PDF
    Chinese hamster ovary (CHO) cells maintained in vitro at pH 6.7 were used to model cells in the acidic environment of tumours. CHO cells grown at pH 6.7 develop thermotolerance during 42 degrees C heating at pH 6.7 and their cytoskeletal systems are resistant to 42 degrees C-induced perinuclear collapse. Hsp27 levels are elevated in cells grown at pH 6.7 and are further induced during 42 degrees C heating, while Hsp70 levels remain low or undetectable, suggesting that Hsp27 is responsible for some of the novel characteristics of these cells. An anti-sense oligonucleotide strategy was used to test the importance of Hsp27 by lowering heat-induced levels of the protein. The response of the microtubular cytoskeleton to heat was used as an endpoint to assess the effectiveness of the anti-sense strategy. Treatment with anti-sense oligonucleotides prevented the heat-induced increase of Hsp27 levels measured immediately following heat. Treatment with anti-sense oligonucleotides also sensitized the cytoskeleton of cells grown at low pH to heat-induced perinuclear collapse. However, cytoskeletal collapse was not evident in cells grown at pH 6.7 and treated with 4-nt mismatch oligonucleotides or in control cells maintained and heated at pH 6.7. The cytoskeleton collapsed around the nucleus in cells cultured and heated at pH 7.3. These results confirm that over-expression of Hsp27 confers heat protection to the microtubular cytoskeleton in CHO cells grown at low pH

    Ways of Asking, Ways of Telling: A Methodological Comparison of Ethnographic and Research Diagnostic Interviews

    Get PDF
    The interpretive understanding that can be derived from interviews is highly influenced by methods of data collection, be they structured or semistructured, ethnographic, clinical, life-history or survey interviews. This article responds to calls for research into the interview process by analyzing data produced by two distinctly different types of interview, a semistructured ethnographic interview and the Structured Clinical Interview for DSM, conducted with participants in the Navajo Healing Project. We examine how the two interview genres shape the context of researcher-respondent interaction and, in turn, influence how patients articulate their lives and their experience in terms of illness, causality, social environment, temporality and self/identity. We discuss the manner in which the two interviews impose narrative constraints on interviewers and respondents, with significant implications for understanding the jointly constructed nature of the interview process. The argument demonstrates both divergence and complementarity in the construction of knowledge by means of these interviewing methods

    Raising the standards of patient-centered outcomes research in myelodysplastic syndromes : Clinical utility and validation of the subscales of the QUALMS from the MDS-RIGHT project

    Get PDF
    Background Clinical decision-making for patients with myelodysplastic syndromes (MDS) is challenging, and both disease and treatment effects heavily impact health-related quality of life (HRQoL) of these patients. Therefore, disease-specific HRQoL measures can be critical to harness the patient voice in MDS research. Methods We report a prospective international validation study of the Quality of Life in Myelodysplasia Scale (QUALMS) with a main focus on providing information on the psychometric characteristics of its three subscales: physical burden (QUALMS-P), emotional burden (QUALMS-E), and benefit finding (QUALMS-BF). The analysis is based on patients enrolled from three European countries and Israel, participating to the MDS-RIGHT Project. The scale structure and psychometric properties of the QUALMS were assessed. Results Overall, 270 patients with a median age of 74?years were analyzed and the majority of them (60.3%) had a low MDS-Comorbidity Index score. Results of the confirmatory factor analysis supported the underlying scale structure of the QUALMS, which, in addition to a total score, includes three subscales: QUALMS-P, QUALMS-E, and the QUALMS-BF. The QUALMS-P exhibited the highest Cronbach's alpha coefficients. Discriminant validity analysis indicated good results with the QUALMS-P and QUALMS-E distinguishing between patients with different performance status, comorbidity, anemia, and transfusion dependency status. No floor and ceiling effects were observed. Responsiveness to change analysis supported the validity of the measure. Patients with a hemoglobin (Hb) level of Conclusions Our study provides additional validation data on the QUALMS from the international MDS-RIGHT Project. The use of this disease-specific HRQoL measure may contribute to raise quality standards of patient-centered outcomes research in MDS

    Light Microsopy Module, International Space Station Premier Automated Microscope

    Get PDF
    The Light Microscopy Module (LMM) was launched to the International Space Station (ISS) in 2009 and began science operations in 2010. It continues to support Physical and Biological scientific research on ISS. During 2015, if all goes as planned, five experiments will be completed: [1] Advanced Colloids Experiments with a manual sample base -3 (ACE-M-3), [2] the Advanced Colloids Experiment with a Heated Base -1 (ACE-H-1), [3] (ACE-H-2), [4] the Advanced Plant Experiment -03 (APEX-03), and [5] the Microchannel Diffusion Experiment (MDE). Preliminary results, along with an overview of present and future LMM capabilities will be presented; this includes details on the planned data imaging processing and storage system, along with the confocal upgrade to the core microscope. [1] New York University: Paul Chaikin, Andrew Hollingsworth, and Stefano Sacanna, [2] University of Pennsylvania: Arjun Yodh and Matthew Gratale, [3] a consortium of universities from the State of Kentucky working through the Experimental Program to Stimulate Competitive Research (EPSCoR): Stuart Williams, Gerold Willing, Hemali Rathnayake, et al., [4] from the University of Florida and CASIS: Anna-Lisa Paul and Rob Ferl, and [5] from the Methodist Hospital Research Institute from CASIS: Alessandro Grattoni and Giancarlo Canavese

    Coulomb dissociation of O-16 into He-4 and C-12

    Get PDF
    We measured the Coulomb dissociation of O-16 into He-4 and C-12 within the FAIR Phase-0 program at GSI Helmholtzzentrum fur Schwerionenforschung Darmstadt, Germany. From this we will extract the photon dissociation cross section O-16(alpha,gamma)C-12, which is the time reversed reaction to C-12(alpha,gamma)O-16. With this indirect method, we aim to improve on the accuracy of the experimental data at lower energies than measured so far. The expected low cross section for the Coulomb dissociation reaction and close magnetic rigidity of beam and fragments demand a high precision measurement. Hence, new detector systems were built and radical changes to the (RB)-B-3 setup were necessary to cope with the high-intensity O-16 beam. All tracking detectors were designed to let the unreacted O-16 ions pass, while detecting the C-12 and He-4

    Coulomb dissociation of 16O into 4He and 12C

    Get PDF
    We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(a,?)16O fusion reaction and to reach lower center-ofmass energies than measured so far. The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-To-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision

    Abstracts from the 20th International Symposium on Signal Transduction at the Blood-Brain Barriers

    Full text link
    https://deepblue.lib.umich.edu/bitstream/2027.42/138963/1/12987_2017_Article_71.pd
    corecore