42 research outputs found

    S22RS SGR No. 16 (Group Billing)

    Get PDF
    A Resolution To Urge and Request LSU Residential Life to Cease Group Billing for Residents Who are Not at Fault of Suspected Miscellaneous Damage

    Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings.

    Get PDF
    BACKGROUND: The survival of adult female Aedes mosquitoes is a critical component of their ability to transmit pathogens such as dengue viruses. One of the principal determinants of Aedes survival is temperature, which has been associated with seasonal changes in Aedes populations and limits their geographical distribution. The effects of temperature and other sources of mortality have been studied in the field, often via mark-release-recapture experiments, and under controlled conditions in the laboratory. Survival results differ and reconciling predictions between the two settings has been hindered by variable measurements from different experimental protocols, lack of precision in measuring survival of free-ranging mosquitoes, and uncertainty about the role of age-dependent mortality in the field. METHODS: Here we apply generalised additive models to data from 351 published adult Ae. aegypti and Ae. albopictus survival experiments in the laboratory to create survival models for each species across their range of viable temperatures. These models are then adjusted to estimate survival at different temperatures in the field using data from 59 Ae. aegypti and Ae. albopictus field survivorship experiments. The uncertainty at each stage of the modelling process is propagated through to provide confidence intervals around our predictions. RESULTS: Our results indicate that adult Ae. albopictus has higher survival than Ae. aegypti in the laboratory and field, however, Ae. aegypti can tolerate a wider range of temperatures. A full breakdown of survival by age and temperature is given for both species. The differences between laboratory and field models also give insight into the relative contributions to mortality from temperature, other environmental factors, and senescence and over what ranges these factors can be important. CONCLUSIONS: Our results support the importance of producing site-specific mosquito survival estimates. By including fluctuating temperature regimes, our models provide insight into seasonal patterns of Ae. aegypti and Ae. albopictus population dynamics that may be relevant to seasonal changes in dengue virus transmission. Our models can be integrated with Aedes and dengue modelling efforts to guide and evaluate vector control, better map the distribution of disease and produce early warning systems for dengue epidemics

    Evaluation of the Human IgG Antibody Response to Aedes albopictus Saliva as a New Specific Biomarker of Exposure to Vector Bites

    Get PDF
    Aedes-borne viruses like dengue and chikungunya are a major problem in Reunion Island. Assessing exposure to Aedes bites is crucial to estimating the risk of pathogen transmission. Currently, the exposure of populations to Aedes albopictus bites is mainly evaluated by entomological methods which are indirect and difficult to apply on a large scale. Recent findings suggest that evaluation of human antibody responses against arthropod salivary proteins could be useful in assessing exposure to mosquito bites. The results indicate that 88% of the studied population produce IgG to Ae. albopictus saliva antigens in Reunion Island and show that this biomarker can detect different levels of individual exposure. In addition, little cross-reactivity is observed with Aedes aegypti saliva, suggesting that this could be a specific marker for exposure to Aedes albopictus bites. Taken together, these results suggest that antibody responses to saliva could constitute a powerful immuno-epidemiological tool for evaluating exposure to Aedes albopictus and therefore the risk of arbovirus infection

    ‘What’s in the NIDDK CDR?’—public query tools for the NIDDK central data repository

    Get PDF
    The National Institute of Diabetes and Digestive Disease (NIDDK) Central Data Repository (CDR) is a web-enabled resource available to researchers and the general public. The CDR warehouses clinical data and study documentation from NIDDK funded research, including such landmark studies as The Diabetes Control and Complications Trial (DCCT, 1983–93) and the Epidemiology of Diabetes Interventions and Complications (EDIC, 1994–present) follow-up study which has been ongoing for more than 20 years. The CDR also houses data from over 7 million biospecimens representing 2 million subjects. To help users explore the vast amount of data stored in the NIDDK CDR, we developed a suite of search mechanisms called the public query tools (PQTs). Five individual tools are available to search data from multiple perspectives: study search, basic search, ontology search, variable summary and sample by condition. PQT enables users to search for information across studies. Users can search for data such as number of subjects, types of biospecimens and disease outcome variables without prior knowledge of the individual studies. This suite of tools will increase the use and maximize the value of the NIDDK data and biospecimen repositories as important resources for the research community

    Transmission Potential of Chikungunya Virus and Control Measures: The Case of Italy

    Get PDF
    During summer 2007 Italy has experienced an epidemic caused by Chikungunya virus – the first large outbreak documented in a temperate climate country – with approximately 161 laboratory confirmed cases concentrated in two bordering villages in North–Eastern Italy comprising 3,968 inhabitants. The seroprevalence was recently estimated to be 10.2%. In this work we provide estimates of the transmission potential of the virus and we assess the efficacy of the measures undertaken by public health authorities to control the epidemic spread. To such aim, we developed a model describing the temporal dynamics of the competent vector, known as Aedes albopictus, explicitly depending on climatic factors, coupled to an epidemic transmission model describing the spread of the epidemic in both humans and mosquitoes. The cumulative number of notified cases predicted by the model was 185 on average (95% CI 117–278), in good agreement with observed data. The probability of observing a major outbreak after the introduction of an infective human case was estimated to be in the range of 32%–76%. We found that the basic reproduction number was in the range of 1.8–6 but it could have been even larger, depending on the density of mosquitoes, which in turn depends on seasonal meteorological effects, besides other local abiotic factors. These results confirm the increasing risk of tropical vector–borne diseases in temperate climate countries, as a consequence of globalization. However, our results show that an epidemic can be controlled by performing a timely intervention, even if the transmission potential of Chikungunya virus is sensibly high

    “Whatever it takes” to resolve the European sovereign debt crisis? Bond pricing regime switches and monetary policy effects

    Get PDF
    This paper investigates the role of unconventional monetary policy as a source of time-variation in the relationship between sovereign bond yield spreads and their fundamental determinants. We use a two-step empirical approach. First, we apply a time-varying parameter panel modelling framework to determine shifts in the pricing regime characterising sovereign bond markets in the euro area over the period January 1999 to July 2016. Second, we estimate the impact of ECB policy interventions on the time varying risk factor sensitivities of spreads. Our results provide evidence of a new bond-pricing regime following the announcement of the Outright Monetary Transactions (OMT) programme in August 2012. This regime is characterised by a weakened link between spreads and fundamentals, but with higher spreads relative to the pre-crisis period and residual redenomination risk. We also find that unconventional monetary policy measures affect the pricing of sovereign risk not only directly, but also indirectly through changes in banking risk. Overall, the actions of the ECB have operated as catalysts for reversing the dynamics of the European sovereign debt crisis

    Detection of In Situ Early Corrosion On Polymer-Coated Metal Substrates

    No full text
    Protective coating systems (PCS) are a common and facile method to protect metal substrates from corrosion. The corrosion control performance of polymer-coated metal substrates is still predominantly evaluated by visual assessment. Unfortunately, for many decades, PCS material development and performance testing has basically been a complicated process of waiting to determine which coating, in relative terms, allows corrosion to occur first from an intentionally created breach through the coating. This type of testing provides only relative ratings between PCS performance. Electrochemical methods, such as electrochemical impedance spectroscopy, each have caveats and pitfalls for qualifying or quantifying polymer-coated metal substrates. When these data are studied carefully, these measurements result in many false positive and false negative results compared with real environmental testing and the paths to failure vary dramatically. The critical issue is that these methods do not result in a scientific basis for understanding either the pathway(s) or progressive milestones toward diminished PCS performance, failure, and the loss of substrate structural integrity for coated substrates. Data supports that ultimately all PCS fail to provide the necessary substrate protection. However, to make substantive gains, scientists and engineers require a rational basis to design, engineer, test, quantify, and/or estimate service life and remaining service life and repair future generations of PCS. Our research goal was to establish a quantifiable characterization protocol (CP) that directly detected, monitored, and ideally quantified the pathway(s) and important milestones of PCS corrosion spatially and temporally, with or without defects which related with testing and assessment variables regardless of environmental severity (real, laboratory, or accelerated). We report herein the CP and the results from an embedded pH-sensitive “turn-on” fluorescent probe blended with a simplified thermoplastic model PCS. The results support that the average-localized macroscopic pH is detected and tracked, and these “molecular titrations” result in values consistent with literature pH citations for premacroscopic corrosion processes, that is, before delamination and a detectable breach. The CP results are an improvement over visual corrosion detection and yet proportional to the steel substrate corrosion. The CP results deliver extreme early detection (within minutes), spatial and temporal tracking, and potentially quantifiable performance differences for the pathways and milestones toward failure of coated substrates with validated sensitivity to variables such as defect versus defect-free films, blending solvent type(s) influence, differences from varied degrees of annealing relative to Tg (thermoplastic films), substrate topography, and preparation differences. The CP utilizes small sample areas (25 mm spheres) and gathers data in a manner designed to improve statistical relevancy, provide results within short timeframes using real-time testing, diminish materials-testing timelines, and connect results with laboratory, accelerated, and real environmental severity differences. The results support that the CP directly measured the earliest possible in situ corrosion processes using defect and defect-free simplified model PCS

    New Imaging Techniques for 90Y Microsphere Radioembolization

    No full text
    http://www.omicsonline.org/2155-9619/2155-9619-2-113.phpinfo:eu-repo/semantics/publishe
    corecore