391 research outputs found

    New Developments of Laser Desorption Ionization Mass Spectrometry in Plant Analysis

    Get PDF
    The structural identification of natural products is one of the major focus areas of analytical chemistry research. Mass spectrometry (MS) has long been used to obtain molecular weights and further molecular formulae. In the past, former ionization sources such as electronic impact unfortunately limited MS analysis to predominately volatile, polar, and thermostable compounds. However, recent developments in soft ionization techniques such as electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), or laser desorption/ionization (LDI) have gradually extended MS analysis to a much wide range of chemical structures. As far as small natural compounds are concerned, LDI sources are still seldom used because of specific technical limitations. Indeed, the photoionization process of LDI is generally assisted by a matrix, which is a small molecule carrying strong UV chromophore. The process is then called matrix‐assisted laser desorption/ionization (MALDI) process. MALDI ionization therefore induces the formation of numerous matrix ions that commonly appear in the range 0–600 Da, and consequently interfere with molecular ions originating from many natural products. For this reason, the correct signal assignment is highly impaired in the critical region of interest. As LDI and MALDI are not only soft ionization processes but also quite sensitive techniques yielding high resolution spectra when coupled to a time‐of‐flight (TOF) analyzer, different attempts have been made to adapt these techniques for the analysis of natural products. Three of them will be more specifically discussed in this chapter: (i) LDI on neat gold surfaces obtained by physical vapor diffusion (PVD), (ii) desorption/ionization on self‐assembled monolayer surfaces (DIAMS), and (iii) the use of specific matrices for the selective detection of alkaloids

    Generalized Farey trees, transfer Operators and phase transitions

    Full text link
    We consider a family of Markov maps on the unit interval, interpolating between the tent map and the Farey map. The latter map is not uniformly expanding. Each map being composed of two fractional linear transformations, the family generalizes many particular properties which for the case of the Farey map have been successfully exploited in number theory. We analyze the dynamics through the spectral analysis of generalized transfer operators. Application of the thermodynamic formalism to the family reveals first and second order phase transitions and unusual properties like positivity of the interaction function.Comment: 39 pages, 10 figure

    Search for the decay K+π+ννˉK^+\to \pi^+ \nu \bar\nu in the momentum region Pπ<195 MeV/cP_\pi < 195 {\rm ~MeV/c}

    Full text link
    We have searched for the decay K+π+ννˉK^+ \to \pi^+ \nu \bar\nu in the kinematic region with pion momentum below the K+π+π0K^+ \to \pi^+ \pi^0 peak. One event was observed, consistent with the background estimate of 0.73±0.180.73\pm 0.18. This implies an upper limit on B(K+π+ννˉ)<4.2×109B(K^+ \to \pi^+ \nu \bar\nu)< 4.2\times 10^{-9} (90% C.L.), consistent with the recently measured branching ratio of (1.570.82+1.75)×1010(1.57^{+1.75}_{-0.82}) \times 10^{-10}, obtained using the standard model spectrum and the kinematic region above the K+π+π0K^+ \to \pi^+ \pi^0 peak. The same data were used to search for K+π+X0K^+ \to \pi^+ X^0, where X0X^0 is a weakly interacting neutral particle or system of particles with 150<MX0<250 MeV/c2150 < M_{X^0} < 250 {\rm ~MeV/c^2}.Comment: 4 pages, 2 figure

    High strain-rate material model validation for laser peening simulation

    Get PDF
    Finite element modeling can be a powerful tool for predicting residual stresses induced by laser peening; however the sign and magnitude of the stress predictions depend strongly on how the material model captures the high strain rate response. Although a Johnson-Cook formulation is often employed, its suitability for modeling phenomena at very high strain rates has not been rigorously evaluated. In this paper, we address the effectiveness of the Johnson-Cook model, with parameters developed from lower strain rate material data (∼10^3 s^–1), to capture the higher strain rate response (∼10^5–10^6 s^–1) encountered during the laser peening process. Published Johnson-Cook parameters extracted from split Hopkinson bar testing were used to predict the shock response of aluminum samples during high-impact flyer plate tests. Additional quasi-static and split Hopkinson bar tests were also conducted to study the model response in the lower strain rate regime. The overall objective of the research was to ascertain whether a material model based on conventional test data (quasi-static compression testing and split Hopkinson bar measurements) can credibly be used in FE simulations to predict laser peen-induced stresses

    First Observation of Coherent π0\pi^0 Production in Neutrino Nucleus Interactions with Eν<E_{\nu}< 2 GeV

    Get PDF
    The MiniBooNE experiment at Fermilab has amassed the largest sample to date of π0\pi^0s produced in neutral current (NC) neutrino-nucleus interactions at low energy. This paper reports a measurement of the momentum distribution of π0\pi^0s produced in mineral oil (CH2_2) and the first observation of coherent π0\pi^0 production below 2 GeV. In the forward direction, the yield of events observed above the expectation for resonant production is attributed primarily to coherent production off carbon, but may also include a small contribution from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino flux, the sum of the NC coherent and diffractive modes is found to be (19.5 ±\pm1.1 (stat) ±\pm2.5 (sys))% of all exclusive NC π0\pi^0 production at MiniBooNE. These measurements are of immediate utility because they quantify an important background to MiniBooNE's search for νμνe\nu_{\mu} \to \nu_e oscillations.Comment: Submitted to Phys. Lett.

    Astroparticle Physics with a Customized Low-Background Broad Energy Germanium Detector

    Full text link
    The MAJORANA Collaboration is building the MAJORANA DEMONSTRATOR, a 60 kg array of high purity germanium detectors housed in an ultra-low background shield at the Sanford Underground Laboratory in Lead, SD. The MAJORANA DEMONSTRATOR will search for neutrinoless double-beta decay of 76Ge while demonstrating the feasibility of a tonne-scale experiment. It may also carry out a dark matter search in the 1-10 GeV/c^2 mass range. We have found that customized Broad Energy Germanium (BEGe) detectors produced by Canberra have several desirable features for a neutrinoless double-beta decay experiment, including low electronic noise, excellent pulse shape analysis capabilities, and simple fabrication. We have deployed a customized BEGe, the MAJORANA Low-Background BEGe at Kimballton (MALBEK), in a low-background cryostat and shield at the Kimballton Underground Research Facility in Virginia. This paper will focus on the detector characteristics and measurements that can be performed with such a radiation detector in a low-background environment.Comment: Submitted to NIMA Proceedings, SORMA XII. 9 pages, 4 figure

    Further search for the decay K+π+ννˉK^+ \to \pi^+ \nu \bar \nu in the momentum region P < 195 MeV/c

    Full text link
    We report the results of a search for the decay K+π+ννˉK^+ \to \pi^+ \nu \bar \nu in the kinematic region with π+\pi^+ momentum 140<P<195140 < P < 195 MeV/c using the data collected by the E787 experiment at BNL. No events were observed. When combined with our previous search in this region, one candidate event with an expected background of 1.22±0.241.22 \pm 0.24 events results in a 90% C.L. upper limit of 2.2×1092.2 \times 10^{-9} on the branching ratio of K+π+ννˉK^+ \to \pi^+ \nu \bar \nu. We also report improved limits on the rates of K+π+X0K^+ \to \pi^+ X^0 and K+π+X1X2K^+ \to \pi^+ X^1 X^2 where X0,X1,X2X^0, X^1, X^2 are hypothetical, massless, long-lived neutral particles.Comment: 5 pages, 3 figures, Accepted for publication in Phys. Rev.

    HighP–TNano-Mechanics of Polycrystalline Nickel

    Get PDF
    We have conducted highP–Tsynchrotron X-ray and time-of-flight neutron diffraction experiments as well as indentation measurements to study equation of state, constitutive properties, and hardness of nanocrystalline and bulk nickel. Our lattice volume–pressure data present a clear evidence of elastic softening in nanocrystalline Ni as compared with the bulk nickel. We show that the enhanced overall compressibility of nanocrystalline Ni is a consequence of the higher compressibility of the surface shell of Ni nanocrystals, which supports the results of molecular dynamics simulation and a generalized model of a nanocrystal with expanded surface layer. The analytical methods we developed based on the peak-profile of diffraction data allow us to identify “micro/local” yield due to high stress concentration at the grain-to-grain contacts and “macro/bulk” yield due to deviatoric stress over the entire sample. The graphic approach of our strain/stress analyses can also reveal the corresponding yield strength, grain crushing/growth, work hardening/softening, and thermal relaxation under highP–Tconditions, as well as the intrinsic residual/surface strains in the polycrystalline bulks. From micro-indentation measurements, we found that a low-temperature annealing (T < 0.4 Tm) hardens nanocrystalline Ni, leading to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of impurity segregation to the grain boundaries of the nanocrystalline Ni
    corecore