598 research outputs found

    Thermoinduced plastic flow and shape memory effects

    Get PDF
    We propose an enhanced form of thermocoupled J2-flow models of finite deformation elastoplasticity with temperature-dependent yielding and hardening behaviour. The thermomechanical constitutive structure of these models is rendered free and explicit in the rigorous sense of thermodynamic consistency. Namely, with a free energy function explicitly introduced in terms of almost any given form of the thermomechanical constitutive functions, the requirements from the second law are identically fulfilled with positive internal dissipation. We study the case when a dependence of yielding and hardening on temperature is given and demonstrate that thermosensitive yielding with anisotropic hardening may give rise to appreciable plastic flow either in a process of heating or in a cyclic process of heating/cooling, thus leading to the findings of one- and two-way thermoinduced plastic flow. We then show that such theoretical findings turn out to be the effects found in shape memory materials, such as one- and two-way memory effects. Thus, shape memory effects may be explained to be thermoinduced plastic flow resulting from thermosensitive yielding and hardening behaviour. These and other relevant facts may suggest that, from a phenomenological standpoint, thermocoupled elastoplastic J2-flow models with thermosensitive yielding and hardening may furnish natural, straightforward descriptions of thermomechanical behaviour of shape memory materials

    FastSIR Algorithm: A Fast Algorithm for simulation of epidemic spread in large networks by using SIR compartment model

    Full text link
    The epidemic spreading on arbitrary complex networks is studied in SIR (Susceptible Infected Recovered) compartment model. We propose our implementation of a Naive SIR algorithm for epidemic simulation spreading on networks that uses data structures efficiently to reduce running time. The Naive SIR algorithm models full epidemic dynamics and can be easily upgraded to parallel version. We also propose novel algorithm for epidemic simulation spreading on networks called the FastSIR algorithm that has better average case running time than the Naive SIR algorithm. The FastSIR algorithm uses novel approach to reduce average case running time by constant factor by using probability distributions of the number of infected nodes. Moreover, the FastSIR algorithm does not follow epidemic dynamics in time, but still captures all infection transfers. Furthermore, we also propose an efficient recursive method for calculating probability distributions of the number of infected nodes. Average case running time of both algorithms has also been derived and experimental analysis was made on five different empirical complex networks.Comment: 8 figure

    Concurrent MEK targeted therapy prevents MAPK pathway reactivation during BRAFV600E targeted inhibition in a novel syngeneic murine glioma model.

    Get PDF
    Inhibitors of BRAFV600E kinase are currently under investigations in preclinical and clinical studies involving BRAFV600E glioma. Studies demonstrated clinical response to such individualized therapy in the majority of patients whereas in some patients tumors continue to grow despite treatment. To study resistance mechanisms, which include feedback activation of mitogen-activated protein kinase (MAPK) signaling in melanoma, we developed a luciferase-modified cell line (2341luc) from a BrafV600E mutant and Cdkn2a- deficient murine high-grade glioma, and analyzed its molecular responses to BRAFV600E- and MAPK kinase (MEK)-targeted inhibition. Immunocompetent, syngeneic FVB/N mice with intracranial grafts of 2341luc were tested for effects of BRAFV600E and MEK inhibitor treatments, with bioluminescence imaging up to 14-days after start of treatment and survival analysis as primary indicators of inhibitor activity. Intracranial injected tumor cells consistently generated high-grade glioma-like tumors in syngeneic mice. Intraperitoneal daily delivery of BRAFV600E inhibitor dabrafenib only transiently suppressed MAPK signaling, and rather increased Akt signaling and failed to extend survival for mice with intracranial 2341luc tumor. MEK inhibitor trametinib delivered by oral gavage daily suppressed MAPK pathway more effectively and had a more durable anti-growth effect than dabrafenib as well as a significant survival benefit. Compared with either agent alone, combined BRAFV600E and MEK inhibitor treatment was more effective in reducing tumor growth and extending animal subject survival, as corresponding to sustained MAPK pathway inhibition. Results derived from the 2341luc engraftment model application have clinical implications for the management of BRAFV600E glioma

    Multi-state epidemic processes on complex networks

    Full text link
    Infectious diseases are practically represented by models with multiple states and complex transition rules corresponding to, for example, birth, death, infection, recovery, disease progression, and quarantine. In addition, networks underlying infection events are often much more complex than described by meanfield equations or regular lattices. In models with simple transition rules such as the SIS and SIR models, heterogeneous contact rates are known to decrease epidemic thresholds. We analyze steady states of various multi-state disease propagation models with heterogeneous contact rates. In many models, heterogeneity simply decreases epidemic thresholds. However, in models with competing pathogens and mutation, coexistence of different pathogens for small infection rates requires network-independent conditions in addition to heterogeneity in contact rates. Furthermore, models without spontaneous neighbor-independent state transitions, such as cyclically competing species, do not show heterogeneity effects.Comment: 7 figures, 1 tabl

    Evolving Clustered Random Networks

    Get PDF
    We propose a Markov chain simulation method to generate simple connected random graphs with a specified degree sequence and level of clustering. The networks generated by our algorithm are random in all other respects and can thus serve as generic models for studying the impacts of degree distributions and clustering on dynamical processes as well as null models for detecting other structural properties in empirical networks

    Predicting link directions via a recursive subgraph-based ranking

    Full text link
    Link directions are essential to the functionality of networks and their prediction is helpful towards a better knowledge of directed networks from incomplete real-world data. We study the problem of predicting the directions of some links by using the existence and directions of the rest of links. We propose a solution by first ranking nodes in a specific order and then predicting each link as stemming from a lower-ranked node towards a higher-ranked one. The proposed ranking method works recursively by utilizing local indicators on multiple scales, each corresponding to a subgraph extracted from the original network. Experiments on real networks show that the directions of a substantial fraction of links can be correctly recovered by our method, which outperforms either purely local or global methods.Comment: 6 pages, 5 figures; revised arguments for methods section; figures replotted; minor revision

    Resistance gene enrichment sequencing (RenSeq) enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations

    Get PDF
    RenSeq is a NB-LRR (nucleotide binding-site leucine-rich repeat) gene-targeted, Resistance gene enrichment and sequencing method that enables discovery and annotation of pathogen resistance gene family members in plant genome sequences. We successfully applied RenSeq to the sequenced potato Solanum tuberosum clone DM, and increased the number of identified NB-LRRs from 438 to 755. The majority of these identified R gene loci reside in poorly or previously unannotated regions of the genome. Sequence and positional details on the 12 chromosomes have been established for 704 NB-LRRs and can be accessed through a genome browser that we provide. We compared these NB-LRR genes and the corresponding oligonucleotide baits with the highest sequence similarity and demonstrated that ~80% sequence identity is sufficient for enrichment. Analysis of the sequenced tomato S. lycopersicum ‘Heinz 1706’ extended the NB-LRR complement to 394 loci. We further describe a methodology that applies RenSeq to rapidly identify molecular markers that co-segregate with a pathogen resistance trait of interest. In two independent segregating populations involving the wild Solanum species S. berthaultii (Rpi-ber2) and S. ruiz-ceballosii (Rpi-rzc1), we were able to apply RenSeq successfully to identify markers that co-segregate with resistance towards the late blight pathogen Phytophthora infestans. These SNP identification workflows were designed as easy-to-adapt Galaxy pipelines
    corecore