1,831 research outputs found
Photocatalytic Hydrogen Production at Titania-Supported Pt Nanoclusters that are Derived from Surface-Anchored Molecular Precursors
Degussa P-25 TiO2 bearing surface-anchored Pt(dcbpy)Cl-2 [dcbpy = 4,4\u27-dicarboxylic acid-2,2\u27-bipyridine] prepared with systematically varied surface coverage produced Pt-0 nanoparticles under bandgap illumination in the presence of methanol hole scavengers. Energy-dispersive X-ray spectroscopy confirmed the presence of elemental platinum in the newly formed nanoparticles during scanning transmission electron microscopy (STEM) eleriments. According to the statistical analysis of numerous STEM images, the Pt-0 nanoclusters were distributed in a segregated manner throughout the titania surface, ranging in size from 1 to 3 nm in diameter. The final achieved nanoparticle size and net hydrogen production were determined as a function of the Pt(dcbpy)Cl-2 surface coverage as well as other systematically varied experimental parameters. The hybrid Pt/TiO2 nanomaterials obtained upon complete decomposition of the Pt(dcbpy)Cl-2 precursor displayed higher photocatalytic activity (300 mu mol/h) for hydrogen evolution in aqueous suspensions when compared with platinized TiO2 derived from H2PtCl6 precursors (130 mu mol/h), as ascertained through gas chromatographic analysis of the photoreactor headspace under identical experimental conditions. The conclusion that H-2 was evolved from Pt-0 sites rather than from molecular Pt(dcbpy)Cl-2 entities was independently supported by Hg and CO poisoning experiments. The formation of small Pt nanopartides (1.5 nm in diameter) prevail at low surface coverage of Pt(dcbpy)Cl-2 on TiO2 (0.5 to 2% by mass) that exhibit enhanced turnover frequencies with respect to all other materials investigated, induding those produced from the in situ photochemical reduction of H2PtCl6 center dot Pt-II precursor absorption in the ultraviolet region appeared to be partially responsible for attenuation of the H-2 evolution rate at higher Pt(dcbpy)Cl-2 surface coverage. The nanoparticle size and hydrogen evolution characteristics of the surface-anchored materials generated through photodeposition were directly compared with those derived from chemical reduction using NaBH4. Finally, Degussa P-25 thin films deposited on FTO substrates enabled electrochemically induced (-1.0 V vs Ag/AgCl, pH 7.0, phosphate buffer) electron trapping (TiO2(e(-))) throughout the titania. After removal of the applied bias and the anaerobic introduction of Pt(dcbpy)Cl-2, the accumulated electrons reduce this molecular species to Pt-0 nanoparticles on the titania electrode surface, as confirmed by TEM measurements, with the concomitant production of H-2 gas. The combined experiments illustrate that TiO2(e(-)) generated with bandgap excitation or via electrochemical bias affords the reduction of Pt(dcbpy)Cl-2 to Pt-0 nanoparticles that in turn are responsible for heterogeneous hydrogen gas evolution
The Complexity of Computing Minimal Unidirectional Covering Sets
Given a binary dominance relation on a set of alternatives, a common thread
in the social sciences is to identify subsets of alternatives that satisfy
certain notions of stability. Examples can be found in areas as diverse as
voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08]
proved that it is NP-hard to decide whether an alternative is contained in some
inclusion-minimal upward or downward covering set. For both problems, we raise
this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and
provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other
natural problems regarding minimal or minimum-size covering sets are hard or
complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of
our results is that neither minimal upward nor minimal downward covering sets
(even when guaranteed to exist) can be computed in polynomial time unless P=NP.
This sharply contrasts with Brandt and Fischer's result that minimal
bidirectional covering sets (i.e., sets that are both minimal upward and
minimal downward covering sets) are polynomial-time computable.Comment: 27 pages, 7 figure
Gelatin methacryloyl is a slow degrading material allowing vascularization and long-term use in vivo
In situ tissue engineering is an emerging field aiming at the generation of ready-to-use three-dimensional tissues. One solution to supply a proper vascularization of larger tissues to provide oxygen and nutrients is the arteriovenous loop (AVL) model. However, for this model, suitable scaffold materials are needed that are biocompatible/non-immunogenic, slowly degradable, and allow vascularization. Here, we investigate the suitability of the known gelatin methacryloyl (GelMA)-based hydrogel for in-situ tissue engineering utilizing the AVL model. Rat AVLs are embedded by two layers of GelMA hydrogel in an inert PTFE chamber and implanted in the groin. Constructs were explanted after 2 or 4 weeks and analyzed. For this purpose, gross morphological, histological, and multiphoton microscopic analysis were performed. Immune response was analyzed based on anti-CD68 and anti-CD163 staining of immune cells. The occurrence of matrix degradation was assayed by anti-MMP3 staining. Vascularization was analyzed by anti-α-smooth muscle actin staining, multiphoton microscopy, as well as expression analysis of 53 angiogenesis-related proteins utilizing a proteome profiler angiogenesis array kit. Here we show that GelMA hydrogels are stable for at least 4 weeks in the rat AVL model. Furthermore, our data indicate that GelMA hydrogels are biocompatible. Finally, we provide evidence that GelMA hydrogels in the AVL model allow connective tissue formation, as well as vascularization, introducing multiphoton microscopy as a new methodology to visualize neovessel formation originating from the AVL. GelMA is a suitable material for in situ and in vivo TE in the AVL model
Deep Underground Science and Engineering Laboratory - Preliminary Design Report
The DUSEL Project has produced the Preliminary Design of the Deep Underground
Science and Engineering Laboratory (DUSEL) at the rehabilitated former
Homestake mine in South Dakota. The Facility design calls for, on the surface,
two new buildings - one a visitor and education center, the other an experiment
assembly hall - and multiple repurposed existing buildings. To support
underground research activities, the design includes two laboratory modules and
additional spaces at a level 4,850 feet underground for physics, biology,
engineering, and Earth science experiments. On the same level, the design
includes a Department of Energy-shepherded Large Cavity supporting the Long
Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates
one laboratory module and additional spaces for physics and Earth science
efforts. With input from some 25 science and engineering collaborations, the
Project has designed critical experimental space and infrastructure needs,
including space for a suite of multidisciplinary experiments in a laboratory
whose projected life span is at least 30 years. From these experiments, a
critical suite of experiments is outlined, whose construction will be funded
along with the facility. The Facility design permits expansion and evolution,
as may be driven by future science requirements, and enables participation by
other agencies. The design leverages South Dakota's substantial investment in
facility infrastructure, risk retirement, and operation of its Sanford
Laboratory at Homestake. The Project is planning education and outreach
programs, and has initiated efforts to establish regional partnerships with
underserved populations - regional American Indian and rural populations
Mechanistic insights into p53-regulated cytotoxicity of combined entinostat and irinotecan against colorectal cancer cells
Late-stage colorectal cancer (CRC) is still a clinically challenging problem. The activity of the tumor suppressor p53 is regulated via post-translational modifications (PTMs). While the relevance of p53 C-terminal acetylation for transcriptional regulation is well defined, it is unknown whether this PTM controls mitochondrially mediated apoptosis directly. We used wild-type p53 or p53-negative human CRC cells, cells with acetylation-defective p53, transformation assays, CRC organoids, and xenograft mouse models to assess how p53 acetylation determines cellular stress responses. The topoisomerase-1 inhibitor irinotecan induces acetylation of several lysine residues within p53. Inhibition of histone deacetylases (HDACs) with the class I HDAC inhibitor entinostat synergistically triggers mitochondrial damage and apoptosis in irinotecan-treated p53-positive CRC cells. This specifically relies on the C-terminal acetylation of p53 by CREB-binding protein/p300 and the presence of C-terminally acetylated p53 in complex with the proapoptotic BCL2 antagonist/killer protein. This control of C-terminal acetylation by HDACs can mechanistically explain why combinations of irinotecan and entinostat represent clinically tractable agents for the therapy of p53-proficient CRC
Взаємодія системи "політика-релігія"
Досліджено феномен суспільних явищ політики і релігії у перерізі їх взаємодії, вивчено історичний досвід такого взаємного впливу. Окреме місце відведено аналізу практичного застосування закону України “Про свободу совісті та релігійні організації”.The article explores the phenomenon of social phenomena politics and religion in the context of their interaction, exploring the historical experience of such mutual influence. A separate analysis is given to the practical application of the Law of Ukraine “On Freedom of Conscience and Religious Organizations”
Interventionally implanted port catheter systems for hepatic arterial infusion of chemotherapy in patients with colorectal liver metastases: A phase II-study and historical comparison with the surgical approach
<p>Abstract</p> <p>Background</p> <p>The high complication rates of surgically implanted port catheter systems (SIPCS) represents a major drawback in the treatment of isolated liver neoplasms by hepatic arterial infusion (HAI) of chemotherapy. Interventionally implanted port catheter systems (IIPCS) have evolved into a promising alternative that enable initiation of HAI without laparatomy, but prospective data on this approach are still sparse. Aim of this study was to evaluate the most important technical endpoints associated with the use of IIPCS for the delivery of 5-fluorouracil-based HAI in patients with colorectal liver metastases in a phase 2-study, and to perform a non-randomised comparison with a historical group of patients in which HAI was administered via SIPCS.</p> <p>Methods</p> <p>41 patients with isolated liver metastases of colorectal cancer were enrolled into a phase II-study and provided with IIPCS between 2001 and 2004 (group A). The primary objective of the trial was defined as evaluation of device-related complications and port duration. Results were compared with those observed in a pre-defined historical collective of 40 patients treated with HAI via SIPCS at our institution between 1996 and 2000 (group B).</p> <p>Results</p> <p>Baseline characteristics were balanced between both groups, except for higher proportions of previous palliative pre-treatment and elevated serum alkaline phosphatase in patients of group A. Implantation of port catheters was successful in all patients of group A, whereas two primary failures were observed in group B. The frequency of device-related complications was similar between both groups, but the secondary failure rate was significantly higher with the use of surgical approach (17% vs. 50%, p < 0.01). Mean port duration was significantly longer in the interventional group (19 vs. 14 months, p = 0.01), with 77 vs. 50% of devices functioning at 12 months (p < 0.01). No unexpected complications were observed in both groups.</p> <p>Conclusion</p> <p>HAI via interventionally implanted port catheters can be safely provided to a collective of patients with colorectal liver metastases, including a relevant proportion of preatreated individuals. It appears to offer technical advantages over the surgical approach.</p
Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF
The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at
the Fermilab Long-Baseline Neutrino Facility (LBNF) is described
Toxin exposure and HLA alleles determine serum antibody binding to toxic shock syndrome toxin 1 (TSST-1) of Staphylococcus aureus
Life-threatening toxic shock syndrome is often caused by the superantigen toxic shock syndrome toxin-1 (TSST-1) produced by Staphylococcus aureus. A well-known risk factor is the lack of neutralizing antibodies. To identify determinants of the anti-TSST-1 antibody response, we examined 976 participants of the German population-based epidemiological Study of Health in Pomerania (SHIP-TREND-0). We measured anti-TSST-1 antibody levels, analyzed the colonization with TSST-1-encoding S. aureus strains, and performed a genome-wide association analysis of genetic risk factors. TSST-1-specific serum IgG levels varied over a range of 4.2 logs and were elevated by a factor of 12.3 upon nasal colonization with TSST-1-encoding S. aureus. Moreover, the anti-TSST-1 antibody levels were strongly associated with HLA class II gene loci. HLA-DRB1*03:01 and HLA-DQB1*02:01 were positively, and HLA-DRB1*01:01 as well as HLA-DQB1*05:01 negatively associated with the anti-TSST-1 antibody levels. Thus, both toxin exposure and HLA alleles affect the human antibody response to TSST-1
Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.
The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD
- …