1,636 research outputs found

    Photocatalytic Hydrogen Production at Titania-Supported Pt Nanoclusters that are Derived from Surface-Anchored Molecular Precursors

    Get PDF
    Degussa P-25 TiO2 bearing surface-anchored Pt(dcbpy)Cl-2 [dcbpy = 4,4\u27-dicarboxylic acid-2,2\u27-bipyridine] prepared with systematically varied surface coverage produced Pt-0 nanoparticles under bandgap illumination in the presence of methanol hole scavengers. Energy-dispersive X-ray spectroscopy confirmed the presence of elemental platinum in the newly formed nanoparticles during scanning transmission electron microscopy (STEM) eleriments. According to the statistical analysis of numerous STEM images, the Pt-0 nanoclusters were distributed in a segregated manner throughout the titania surface, ranging in size from 1 to 3 nm in diameter. The final achieved nanoparticle size and net hydrogen production were determined as a function of the Pt(dcbpy)Cl-2 surface coverage as well as other systematically varied experimental parameters. The hybrid Pt/TiO2 nanomaterials obtained upon complete decomposition of the Pt(dcbpy)Cl-2 precursor displayed higher photocatalytic activity (300 mu mol/h) for hydrogen evolution in aqueous suspensions when compared with platinized TiO2 derived from H2PtCl6 precursors (130 mu mol/h), as ascertained through gas chromatographic analysis of the photoreactor headspace under identical experimental conditions. The conclusion that H-2 was evolved from Pt-0 sites rather than from molecular Pt(dcbpy)Cl-2 entities was independently supported by Hg and CO poisoning experiments. The formation of small Pt nanopartides (1.5 nm in diameter) prevail at low surface coverage of Pt(dcbpy)Cl-2 on TiO2 (0.5 to 2% by mass) that exhibit enhanced turnover frequencies with respect to all other materials investigated, induding those produced from the in situ photochemical reduction of H2PtCl6 center dot Pt-II precursor absorption in the ultraviolet region appeared to be partially responsible for attenuation of the H-2 evolution rate at higher Pt(dcbpy)Cl-2 surface coverage. The nanoparticle size and hydrogen evolution characteristics of the surface-anchored materials generated through photodeposition were directly compared with those derived from chemical reduction using NaBH4. Finally, Degussa P-25 thin films deposited on FTO substrates enabled electrochemically induced (-1.0 V vs Ag/AgCl, pH 7.0, phosphate buffer) electron trapping (TiO2(e(-))) throughout the titania. After removal of the applied bias and the anaerobic introduction of Pt(dcbpy)Cl-2, the accumulated electrons reduce this molecular species to Pt-0 nanoparticles on the titania electrode surface, as confirmed by TEM measurements, with the concomitant production of H-2 gas. The combined experiments illustrate that TiO2(e(-)) generated with bandgap excitation or via electrochemical bias affords the reduction of Pt(dcbpy)Cl-2 to Pt-0 nanoparticles that in turn are responsible for heterogeneous hydrogen gas evolution

    The Complexity of Computing Minimal Unidirectional Covering Sets

    Full text link
    Given a binary dominance relation on a set of alternatives, a common thread in the social sciences is to identify subsets of alternatives that satisfy certain notions of stability. Examples can be found in areas as diverse as voting theory, game theory, and argumentation theory. Brandt and Fischer [BF08] proved that it is NP-hard to decide whether an alternative is contained in some inclusion-minimal upward or downward covering set. For both problems, we raise this lower bound to the Theta_{2}^{p} level of the polynomial hierarchy and provide a Sigma_{2}^{p} upper bound. Relatedly, we show that a variety of other natural problems regarding minimal or minimum-size covering sets are hard or complete for either of NP, coNP, and Theta_{2}^{p}. An important consequence of our results is that neither minimal upward nor minimal downward covering sets (even when guaranteed to exist) can be computed in polynomial time unless P=NP. This sharply contrasts with Brandt and Fischer's result that minimal bidirectional covering sets (i.e., sets that are both minimal upward and minimal downward covering sets) are polynomial-time computable.Comment: 27 pages, 7 figure

    Deep Underground Science and Engineering Laboratory - Preliminary Design Report

    Full text link
    The DUSEL Project has produced the Preliminary Design of the Deep Underground Science and Engineering Laboratory (DUSEL) at the rehabilitated former Homestake mine in South Dakota. The Facility design calls for, on the surface, two new buildings - one a visitor and education center, the other an experiment assembly hall - and multiple repurposed existing buildings. To support underground research activities, the design includes two laboratory modules and additional spaces at a level 4,850 feet underground for physics, biology, engineering, and Earth science experiments. On the same level, the design includes a Department of Energy-shepherded Large Cavity supporting the Long Baseline Neutrino Experiment. At the 7,400-feet level, the design incorporates one laboratory module and additional spaces for physics and Earth science efforts. With input from some 25 science and engineering collaborations, the Project has designed critical experimental space and infrastructure needs, including space for a suite of multidisciplinary experiments in a laboratory whose projected life span is at least 30 years. From these experiments, a critical suite of experiments is outlined, whose construction will be funded along with the facility. The Facility design permits expansion and evolution, as may be driven by future science requirements, and enables participation by other agencies. The design leverages South Dakota's substantial investment in facility infrastructure, risk retirement, and operation of its Sanford Laboratory at Homestake. The Project is planning education and outreach programs, and has initiated efforts to establish regional partnerships with underserved populations - regional American Indian and rural populations

    Взаємодія системи "політика-релігія"

    Get PDF
    Досліджено феномен суспільних явищ політики і релігії у перерізі їх взаємодії, вивчено історичний досвід такого взаємного впливу. Окреме місце відведено аналізу практичного застосування закону України “Про свободу совісті та релігійні організації”.The article explores the phenomenon of social phenomena politics and religion in the context of their interaction, exploring the historical experience of such mutual influence. A separate analysis is given to the practical application of the Law of Ukraine “On Freedom of Conscience and Religious Organizations”

    Interventionally implanted port catheter systems for hepatic arterial infusion of chemotherapy in patients with colorectal liver metastases: A phase II-study and historical comparison with the surgical approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The high complication rates of surgically implanted port catheter systems (SIPCS) represents a major drawback in the treatment of isolated liver neoplasms by hepatic arterial infusion (HAI) of chemotherapy. Interventionally implanted port catheter systems (IIPCS) have evolved into a promising alternative that enable initiation of HAI without laparatomy, but prospective data on this approach are still sparse. Aim of this study was to evaluate the most important technical endpoints associated with the use of IIPCS for the delivery of 5-fluorouracil-based HAI in patients with colorectal liver metastases in a phase 2-study, and to perform a non-randomised comparison with a historical group of patients in which HAI was administered via SIPCS.</p> <p>Methods</p> <p>41 patients with isolated liver metastases of colorectal cancer were enrolled into a phase II-study and provided with IIPCS between 2001 and 2004 (group A). The primary objective of the trial was defined as evaluation of device-related complications and port duration. Results were compared with those observed in a pre-defined historical collective of 40 patients treated with HAI via SIPCS at our institution between 1996 and 2000 (group B).</p> <p>Results</p> <p>Baseline characteristics were balanced between both groups, except for higher proportions of previous palliative pre-treatment and elevated serum alkaline phosphatase in patients of group A. Implantation of port catheters was successful in all patients of group A, whereas two primary failures were observed in group B. The frequency of device-related complications was similar between both groups, but the secondary failure rate was significantly higher with the use of surgical approach (17% vs. 50%, p < 0.01). Mean port duration was significantly longer in the interventional group (19 vs. 14 months, p = 0.01), with 77 vs. 50% of devices functioning at 12 months (p < 0.01). No unexpected complications were observed in both groups.</p> <p>Conclusion</p> <p>HAI via interventionally implanted port catheters can be safely provided to a collective of patients with colorectal liver metastases, including a relevant proportion of preatreated individuals. It appears to offer technical advantages over the surgical approach.</p

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 2: The Physics Program for DUNE at LBNF

    Full text link
    The Physics Program for the Deep Underground Neutrino Experiment (DUNE) at the Fermilab Long-Baseline Neutrino Facility (LBNF) is described

    Toxin exposure and HLA alleles determine serum antibody binding to toxic shock syndrome toxin 1 (TSST-1) of Staphylococcus aureus

    Get PDF
    Life-threatening toxic shock syndrome is often caused by the superantigen toxic shock syndrome toxin-1 (TSST-1) produced by Staphylococcus aureus. A well-known risk factor is the lack of neutralizing antibodies. To identify determinants of the anti-TSST-1 antibody response, we examined 976 participants of the German population-based epidemiological Study of Health in Pomerania (SHIP-TREND-0). We measured anti-TSST-1 antibody levels, analyzed the colonization with TSST-1-encoding S. aureus strains, and performed a genome-wide association analysis of genetic risk factors. TSST-1-specific serum IgG levels varied over a range of 4.2 logs and were elevated by a factor of 12.3 upon nasal colonization with TSST-1-encoding S. aureus. Moreover, the anti-TSST-1 antibody levels were strongly associated with HLA class II gene loci. HLA-DRB1*03:01 and HLA-DQB1*02:01 were positively, and HLA-DRB1*01:01 as well as HLA-DQB1*05:01 negatively associated with the anti-TSST-1 antibody levels. Thus, both toxin exposure and HLA alleles affect the human antibody response to TSST-1

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    K(2P)18.1 translates T cell receptor signals into thymic regulatory T cell development

    Get PDF
    It remains largely unclear how thymocytes translate relative differences in T cell receptor (TCR) signal strength into distinct developmental programs that drive the cell fate decisions towards conventional (Tconv) or regulatory T cells (Treg). Following TCR activation, intracellular calcium (Ca2+) is the most important second messenger, for which the potassium channel K(2P)18.1 is a relevant regulator. Here, we identify K(2P)18.1 as a central translator of the TCR signal into the thymus-derived Treg (tTreg) selection process. TCR signal was coupled to NF-kappa B-mediated K(2P)18.1 upregulation in tTreg progenitors. K(2P)18.1 provided the driving force for sustained Ca2+ influx that facilitated NF-kappa B- and NFAT-dependent expression of FoxP3, the master transcription factor for Treg development and function. Loss of K(2P)18.1 ion-current function induced a mild lymphoproliferative phenotype in mice, with reduced Treg numbers that led to aggravated experimental autoimmune encephalomyelitis, while a gain-of-function mutation in K(2P)18.1 resulted in increased Treg numbers in mice. Our findings in human thymus, recent thymic emigrants and multiple sclerosis patients with a dominant-negative missense K(2P)18.1 variant that is associated with poor clinical outcomes indicate that K(2P)18.1 also plays a role in human Treg development. Pharmacological modulation of K(2P)18.1 specifically modulated Treg numbers in vitro and in vivo. Finally, we identified nitroxoline as a K(2P)18.1 activator that led to rapid and reversible Treg increase in patients with urinary tract infections. Conclusively, our findings reveal how K(2P)18.1 translates TCR signals into thymic T cell fate decisions and Treg development, and provide a basis for the therapeutic utilization of Treg in several human disorders.Peer reviewe
    corecore