215 research outputs found

    Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland

    Get PDF
    1 The arbuscular mycorrhizal (AM) fungi colonizing plants at a woodland site in North Yorkshire (UK) have been characterized from the roots of five plant species (Rubus fruticosus agg. L., Epilobium angustifolium L., Acer pseudoplatanus L., Ajuga reptans L. and Glechoma hederacea L.), and identified using small-subunit rRNA (SSUrRNA) gene amplification and sequencing. 2 Interactions between five plant species from the site and four co-occurring glomalean fungi were investigated in artificial one-to-one AM symbioses. Three of the fungi were isolated from the site; the fourth was a culture genetically similar to a taxon found at the site. Phosphorus uptake and growth responses were compared with non-mycorrhizal controls. 3 Individual fungi colonized each plant with different spatial distribution and intensity. Some did not colonize at all, indicating incompatibility under the conditions used in the experiments. 4 Glomus hoi consistently occupied a large proportion of root systems and outperformed the other fungi, improving P uptake and enhancing the growth of four out of the five plant species. Only G. hoi colonized and increased P uptake in Acer pseudoplatanus, the host plant with which it associates almost exclusively under field conditions. Colonization of all plant species by Scutellospora dipurpurescens was sparse, and beneficial to only one of the host plants (Teucrium scorodonia). Archaeospora trappei and Glomus sp. UY1225 had variable effects on the host plants, conferring a range of P uptake and growth benefits on Lysimachia nummularia and T. scorodonia, increasing P uptake whilst not affecting biomass in Ajuga reptans and Glechoma hederacea, and failing to form mycorrhizas with A. pseudoplatanus. 5 These experimental mycorrhizas show that root colonization, symbiont compatibility and plant performance vary with each fungus-plant combination, even when the plants and fungi naturally co-exist. 6 We provide evidence of physical and functional selectivity in AM. The small number of described AM fungal species (154) has been ascribed to their supposed lack of host specificity, but if the selectivity we have observed is the general rule, then we may predict that many more, probably hard-to-culture glomalean species await discovery, or that members of species as currently perceived may be physiologically or functionally distinct

    Correlating activity and defects in (photo)electrocatalysts using in-situ transient optical microscopy

    Full text link
    (Photo)electrocatalysts capture sunlight and use it to drive chemical reactions such as water splitting to produce H2. A major factor limiting photocatalyst development is their large heterogeneity which spatially modulates reactivity and precludes establishing robust structure-function relationships. To make such links requires simultaneously probing of the electrochemical environment at microscopic length scales (nm to um) and broad timescales (ns to s). Here, we address this challenge by developing and applying in-situ steady-state and transient optical microscopies to directly map and correlate local electrochemical activity with hole lifetimes, oxygen vacancy concentration and the photoelectrodes crystal structure. Using this combined approach alongside spatially resolved X-Ray absorption measurements, we study microstructural and point defects in prototypical hematite (Fe2O3) photoanodes. We demonstrate that regions of Fe2O3, adjacent to microstructural cracks have a better photoelectrochemical response and reduced back electron recombination due to an optimal oxide vacancy concentration, with the film thickness and carbon impurities also dramatically influencing activity in a complex manner. Our work highlights the importance of microscopic mapping to understand activity and the impact of defects in even, seemingly, homogeneous solid-state metal oxide photoelectrodes

    Exploring the microstructure of hydrated collagen hydrogels under scanning electron microscopy

    Get PDF
    Collagen hydrogels are a rapidly expanding platform in bioengineering and soft materials engineering for novel applications focused on medical therapeutics, medical devices and biosensors. Observations linking microstructure to material properties and function enables rational design strategies to control this space. Visualisation of the microscale organisation of these soft hydrated materials presents unique technical challenges due to the relationship between hydration and the molecular organisation of a collagen gel. Scanning electron microscopy is a robust tool widely employed to visualise and explore materials on the microscale. However, investigation of collagen gel microstructure is difficult without imparting structural changes during preparation and/or observation. Electrons are poorly propagated within liquid-phase materials, limiting the ability of electron microscopy to interrogate hydrated gels. Sample preparation techniques to remove water induce artefactual changes in material microstructure particularly in complex materials such as collagen, highlighting a critical need to develop robust material handling protocols for the imaging of collagen hydrogels. Here a collagen hydrogel is fabricated, and the gel state explored under high-vacuum (10−6Pa) and low-vacuum (80–120Pa) conditions, and in an environmental SEM chamber. Visualisation of collagen fibres is found to be dependent on the degree of sample hydration, with higher imaging chamber pressures and humidity resulting in decreased feature fidelity. Reduction of imaging chamber pressure is used to induce evaporation of gel water content, revealing collagen fibres of significantly larger diameter than observed in samples dehydrated prior to imaging. Rapid freezing and cryogenic handling of the gel material is found to retain a porous 3D structure following sublimation of the gel water content. Comparative analysis of collagen hydrogel materials demonstrates the care needed when preparing hydrogel samples for electron microscopy

    Global gene expression analysis of human erythroid progenitors

    Get PDF
    This article is available open access through the publisher’s website. Copyright @ 2011 American Society of Hematology. This article has an erratum: http://bloodjournal.hematologylibrary.org/content/118/26/6993.3.Understanding the pattern of gene expression during erythropoiesis is crucial for a synthesis of erythroid developmental biology. Here, we isolated 4 distinct populations at successive erythropoietin-dependent stages of erythropoiesis, including the terminal, pyknotic stage. The transcriptome was determined using Affymetrix arrays. First, we demonstrated the importance of using defined cell populations to identify lineage and temporally specific patterns of gene expression. Cells sorted by surface expression profile not only express significantly fewer genes than unsorted cells but also demonstrate significantly greater differences in the expression levels of particular genes between stages than unsorted cells. Second, using standard software, we identified more than 1000 transcripts not previously observed to be differentially expressed during erythroid maturation, 13 of which are highly significantly terminally regulated, including RFXAP and SMARCA4. Third, using matched filtering, we identified 12 transcripts not previously reported to be continuously up-regulated in maturing human primary erythroblasts. Finally, using transcription factor binding site analysis, we identified potential transcription factors that may regulate gene expression during terminal erythropoiesis. Our stringent lists of differentially regulated and continuously expressed transcripts containing many genes with undiscovered functions in erythroblasts are a resource for future functional studies of erythropoiesis. Our Human Erythroid Maturation database is available at https://cellline.molbiol.ox.ac.uk/eryth/index.html.National Health Service Blood and Transplant, National Institute for Health Research Biomedical Research Center Program, and National Institute for Health Research

    Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest

    Get PDF
    We have used molecular techniques to investigate the diversity and distribution of the arbuscular mycorrhizal (AM) fungi colonizing tree seedling roots in the tropical forest on Barro Colorado Island (BCI), Republic of Panama. In the first year, we sampled newly emergent seedlings of the understory treelet Faramea occidentalis and the canopy emergent Tetragastris panamensis, from mixed seedling carpets at each of two sites. The following year we sampled surviving seedlings from these cohorts. The roots of 48 plants were analysed using AM fungal-specific primers to amplify and clone partial small subunit (SSU) ribosomal RNA gene sequences. Over 1300 clones were screened for random fragment length polymorphism (RFLP) variation and 7% of these were sequenced. Compared with AM fungal communities sampled from temperate habitats using the same method, the overall diversity was high, with a total of 30 AM fungal types identified. Seventeen of these types have not been recorded previously, with the remainder being similar to types reported from temperate habitats. The tropical mycorrhizal population showed significant spatial heterogeneity and nonrandom associations with the different hosts. Moreover there was a strong shift in the mycorrhizal communities over time. AM fungal types that were dominant in the newly germinated seedlings were almost entirely replaced by previously rare types in the surviving seedlings the following year. The high diversity and huge variation detected across time points, sites and hosts, implies that the AM fungal types are ecologically distinct and thus may have the potential to influence recruitment and host composition in tropical forests

    Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field

    Get PDF
    Climate change treatments - winter warming, summer drought and increased summer precipitation - have been imposed on an upland grassland continuously for 7 years. The vegetation was surveyed yearly. In the seventh year, soil samples were collected on four occasions through the growing season in order to assess mycorrhizal fungal abundance. Mycorrhizal fungal colonisation of roots and extraradical mycorrhizal hyphal (EMH) density in the soil were both affected by the climatic manipulations, especially by summer drought. Both winter warming and summer drought increased the proportion of root length colonised (RLC) and decreased the density of external mycorrhizal hyphal. Much of the response of mycorrhizal fungi to climate change could be attributed to climate-induced changes in the vegetation, especially plant species relative abundance. However, it is possible that some of the mycorrhizal response to the climatic manipulations was direct - for example, the response of the EMH density to the drought treatment. Future work should address the likely change in mycorrhizal functioning under warmer and drier conditions

    HLA haplotypes associated with hemochromatosis mutations in the Spanish population

    Get PDF
    BACKGROUND: The present study is an analysis of the frequencies of HLA-A and -B antigens and HLA haplotypes in two groups of individuals homozygous for the two main HFE mutations (C282Y and H63D) and a group heterozygous for the S65C mutation. METHODS: The study population includes: 1123 healthy individuals, 100 homozygous for the C282Y mutation, 138 homozygous for the H63D mutation and 17 heterozygous for the S65C mutation. HFE and HLA alleles were detected using DNA-based and microlymphocytotoxicity techniques respectively. RESULTS: An expected significant association between C282Y and the HLA-A3/B7 haplotype was found, but other HLA haplotypes carrying the -A3 antigen were found: HLA-A3/B62 and HLA-A3/B44. Also, a significant association between H63D mutation and HLA-A29/B44 haplotype was found, and again other HLA haplotypes carrying the HLA-A29 antigen were also found: HLA-A29/B14 and HLA-A29/B62. In addition, the S65C mutation seems to be associated with a HLA haplotype carrying the HLA-A26 antigen. CONCLUSION: These findings clearly suggest that HLA-A3/B7 and HLA-A29/B44 are the ancestral haplotypes from which the C282Y and H63D mutations originated, respectively. The frequencies of these mutations in different populations, their geographical distribution, and the degree of the statistical association to the ancestral haplotypes, suggest that the H63D mutation must have occurred earlier than the C282Y mutation

    JAK-STAT and AKT pathway-coupled genes in erythroid progenitor cells through ontogeny

    Get PDF
    Background: It has been reported that the phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway regulates erythropoietin (EPO)-induced survival, proliferation, and maturation of early erythroid progenitors. Erythroid cell proliferation and survival have also been related to activation of the JAK-STAT pathway. The goal of this study was to observe the function of EPO activation of JAK-STAT and PI3K/AKT pathways in the development of erythroid progenitors from hematopoietic CD34(+) progenitor cells, as well as to distinguish early EPO target genes in human erythroid progenitors during ontogeny. Methods: Hematopoietic CD34(+) progenitor cells, isolated from fetal and adult hematopoietic tissues, were differentiated into erythroid progenitor cells. We have used microarray analysis to examine JAK-STAT and PI3K/AKT related genes, as well as broad gene expression modulation in these human erythroid progenitor cells. Results: In microarray studies, a total of 1755 genes were expressed in fetal liver, 3844 in cord blood, 1770 in adult bone marrow, and 1325 genes in peripheral blood-derived erythroid progenitor cells. The erythroid progenitor cells shared 1011 common genes. Using the Ingenuity Pathways Analysis software, we evaluated the network pathways of genes linked to hematological system development, cellular growth and proliferation. The KITLG, EPO, GATA1, PIM1 and STAT3 genes represent the major connection points in the hematological system development linked genes. Some JAK-STAT signaling pathway-linked genes were steadily upregulated throughout ontogeny (PIM1, SOCS2, MYC, PTPN11), while others were downregulated (PTPN6, PIAS, SPRED2). In addition, some JAK-STAT pathway related genes are differentially expressed only in some stages of ontogeny (STATs, GRB2, CREBB). Beside the continuously upregulated (AKT1, PPP2CA, CHUK, NFKB1) and downregulated (FOXO1, PDPK1, PIK3CG) genes in the PI3K-AKT signaling pathway, we also observed intermittently regulated gene expression (NFKBIA, YWHAH). Conclusions: This broad overview of gene expression in erythropoiesis revealed transcription factors differentially expressed in some stages of ontogenesis. Finally, our results show that EPO-mediated proliferation and survival of erythroid progenitors occurs mainly through modulation of JAK-STAT pathway associated STATs, GRB2 and PIK3 genes, as well as AKT pathway-coupled NFKBIA and YWHAH genes

    Study protocol title: a prospective cohort study of low back pain

    Get PDF
    BACKGROUND: Few prospective cohort studies of workplace low back pain (LBP) with quantified job physical exposure have been performed. There are few prospective epidemiological studies for LBP occupational risk factors and reported data generally have few adjustments for many personal and psychosocial factors. METHODS/DESIGN: A multi-center prospective cohort study has been incepted to quantify risk factors for LBP and potentially develop improved methods for designing and analyzing jobs. Due to the subjectivity of LBP, six measures of LBP are captured: 1) any LBP, 2) LBP ≥ 5/10 pain rating, 3) LBP with medication use, 4) LBP with healthcare provider visits, 5) LBP necessitating modified work duties and 6) LBP with lost work time. Workers have thus far been enrolled from 30 different employment settings in 4 diverse US states and performed widely varying work. At baseline, workers undergo laptop-administered questionnaires, structured interviews, and two standardized physical examinations to ascertain demographics, medical history, psychosocial factors, hobbies and physical activities, and current musculoskeletal disorders. All workers’ jobs are individually measured for physical factors and are videotaped. Workers are followed monthly for the development of low back pain. Changes in jobs necessitate re-measure and re-videotaping of job physical factors. The lifetime cumulative incidence of low back pain will also include those with a past history of low back pain. Incident cases will exclude prevalent cases at baseline. Statistical methods planned include survival analyses and logistic regression. DISCUSSION: Data analysis of a prospective cohort study of low back pain is underway and has successfully enrolled over 800 workers to date
    • …
    corecore