123 research outputs found

    Rwandan Pay-As-You-Go Solar Home System User Payment Behavioural Types

    Get PDF
    The pay-as-you-go (PAYGo) model is now the principal way through which solar home systems (SHSs) are distributed in Sub-Saharan Africa. By alleviating the upfront cost and providing flexible payment schemes, the PAYGo model helps tackle what is still the main barrier for SHS adoption-i.e., affordability. However, the scheme’s design and evaluation are still largely guided by assumptions on user behaviour. This work provides a first evidence-based look into SHS PAYGo user payment patterns and behaviours, by using payment records of over 32,000 Rwandan SHS users. Three clustering algorithms are implemented to conduct a customer segmentation, employing an ensemble validation method which facilitates qualitative oversight. The analysis reveals five user payment behavioural profiles which serve to aid improvement in the current PAYGo model design

    Recombinant canine single chain insulin analogues: Insulin receptor binding capacity and ability to stimulate glucose uptake

    Get PDF
    Virtually all diabetic dogs require exogenous insulin therapy to control their hyperglycaemia. In the UK, the only licensed insulin product currently available is a purified porcine insulin preparation. Recombinant insulin is somewhat problematic in terms of its manufacture, since the gene product (preproinsulin) undergoes substantial post-translational modification in pancreatic β cells before it becomes biologically active. The aim of the present study was to develop recombinant canine single chain insulin (SCI) analogues that could be produced in a prokaryotic expression system and which would require minimal processing. Three recombinant SCI constructs were developed in a prokaryotic expression vector, by replacing the insulin C-peptide sequence with one encoding a synthetic peptide (GGGPGKR), or with one of two insulin-like growth factor (IGF)-2 C-peptide coding sequences (human: SRVSRRSR; canine: SRVTRRSSR). Recombinant proteins were expressed in the periplasmic fraction of Escherichia coli and assessed for their ability to bind to the insulin and IGF-1 receptors, and to stimulate glucose uptake in 3T3-L1 adipocytes. All three recombinant SCI analogues demonstrated preferential binding to the insulin receptor compared to the IGF-1 receptor, with increased binding compared to recombinant canine proinsulin. The recombinant SCI analogues stimulated glucose uptake in 3T3-L1 adipocytes compared to negligible uptake using recombinant canine proinsulin, with the canine insulin/cIGF-2 chimaeric SCI analogue demonstrating the greatest effect. Thus, biologically-active recombinant canine SCI analogues can be produced relatively easily in bacteria, which could potentially be used for treatment of diabetic dogs

    Preventing Biofilm Formation and Encrustation on Urinary Implants: (Bio)molecular and Physical Research Approaches

    Get PDF
    Stents and catheters are used to facilitate urine drainage within the urinary system. When such sterile implants are inserted into the urinary tract, ions, macromolecules and bacteria from urine, blood or underlying tissues accumulate on their surface. We presented a brief but comprehensive overview of future research strategies in the prevention of urinary device encrustation with an emphasis on biodegradability, molecular, microbiological and physical research approaches. The large and strongly associated field of stent coatings and tissue engineering is outlined elsewhere in this book. There is still plenty of room for future investigations in the fields of material science, surface science, and biomedical engineering to improve and create the most effective urinary implants. In an era where material science, robotics and artificial intelligence have undergone great progress, futuristic ideas may become a reality. These ideas include the creation of multifunctional programmable intelligent urinary implants (core and surface) capable to adapt to the complex biological and physiological environment through sensing or by algorithms from artificial intelligence included in the implant. Urinary implants are at the crossroads of several scientific disciplines, and progress will only be achieved if scientists and physicians collaborate using basic and applied scientific approaches

    Explorations for natural enemies of the cassava green mite in Brazil.

    Get PDF
    The cassava green mite (Mononychellus tanajoa (Bondar)) is today one of the most important pests of cassava in Africa. Explorations for efficient natural enemies of that pest were initiated in Brazil in the beginning of 1988 through an agreement between Africa-wide Biological Control Programm/International Institute of Tropical Agriculture and the Empresa Brasileira de Pesquisa Agropecuaria (EMBRAPA). The work consists basically of two major components. The first refers to the identification of areas with consistently low infestations of the mite and determination of the natural enemies associated with it. The second refers to field estimations of the efficiency of the natural enemies found. Until now, the most widespread enemies detected were the predaceous Amblyseius idaeus (Denmark and Muma) and Amblyseius limonicus Garman and McGregor s.l., the former in drier and the latter in more humid places

    Drawing inspiration from nature to develop anti-fouling coatings: the development of biomimetic polymer surfaces and their effect on bacterial fouling

    Get PDF
    The development of self-cleaning biomimetic surfaces has the potential to be of great benefit to human health, in addition to reducing the economic burden on industries worldwide. Consequently, this study developed a biomimetic wax surface using a moulding technique which emulated the topography of the self-cleaning Gladiolus hybridus (Gladioli) leaf. A comparison of topographies was performed for unmodified wax surfaces (control), biomimetic wax surfaces, and Gladioli leaves using optical profilometry and scanning electron microscopy. The results demonstrated that the biomimetic wax surface and Gladioli leaf had extremely similar surface roughness parameters, but the water contact angle of the Gladioli leaf was significantly higher than the replicated biomimetic surface. The self-cleaning properties of the biomimetic and control surfaces were compared by measuring their propensity to repel Escherichia coli and Listeria monocytogenes attachment, adhesion, and retention in mono-and co-culture conditions. When the bacterial assays were carried out in monoculture, the biomimetic surfaces retained fewer bacteria than the control surfaces. However, when using co-cultures of the bacterial species, only following the retention assays were the bacterial numbers reduced on the biomimetic surfaces. The results demonstrate that such surfaces may be effective in reducing biofouling if used in the appropriate medical, marine, and industrial scenarios. This study provides valuable insight into the anti-fouling physical and chemical control mechanisms found in plants, which are particularly appealing for engineering purposes

    Export of functional Streptomyces coelicolor alditol oxidase to the periplasm or cell surface of Escherichia coli and its application in whole-cell biocatalysis

    Get PDF
    Streptomyces coelicolor A3(2) alditol oxidase (AldO) is a soluble monomeric flavoprotein in which the flavin cofactor is covalently linked to the polypeptide chain. AldO displays high reactivity towards different polyols such as xylitol and sorbitol. These characteristics make AldO industrially relevant, but full biotechnological exploitation of this enzyme is at present restricted by laborious and costly purification steps. To eliminate the need for enzyme purification, this study describes a whole-cell AldO biocatalyst system. To this end, we have directed AldO to the periplasm or cell surface of Escherichia coli. For periplasmic export, AldO was fused to endogenous E. coli signal sequences known to direct their passenger proteins into the SecB, signal recognition particle (SRP), or Twin-arginine translocation (Tat) pathway. In addition, AldO was fused to an ice nucleation protein (INP)-based anchoring motif for surface display. The results show that Tat-exported AldO and INP-surface-displayed AldO are active. The Tat-based system was successfully employed in converting xylitol by whole cells, whereas the use of the INP-based system was most likely restricted by lipopolysaccharide LPS in wild-type cells. It is anticipated that these whole-cell systems will be a valuable tool for further biological and industrial exploitation of AldO and other cofactor-containing enzymes.

    Seletividade de agroquimicos a Mononychellus tanajoa (Bondar) e Amblyseius idaeus (Denmark & Muma) (Acari: Tetranychidae e Phytoseiidae).

    Get PDF
    Mononychellus tanajoa e uma das principais pragas da mandioca. Devido as caracteristicas da cultura e da praga tem sido proposto o uso de inimigos naturais para seu controle. Dentre estes, A. idaeus e um dos predadores de M. tanajoa encontrado com maior frequencia no nordeste brasileiro. Para avaliacao de sua eficiencia, usa-se comparar a flutuacao da praga entre parcelas onde o predador esteja presente e, onde o predador seja excluido mediante a utilizacao de produtos de seletividade inversa. Com o objetivo de se conhecer os produtos mais indicados para este estudo, foram realizados ensaios em laboratorio. O metodo de imersao de laminas foi utilizado para essas duas especies de acaros sendo realizadas quatro repeticoes a cinco concentracoes diferentes para cada produto. Foram utilizados: abamectina, carbaril, deltametrina, dimetoato, dicofol, endosulfan, mation, paration metilico, permetrina e trazofos. Deltrametrina, dimetoato, permetrina e triazofos mostraram-se promissores para utilizacao a nivel de campo, por serem mais toxicos a A. idaeus e menos toxicos a M. tanajoa

    Principal Component Analysis to Determine the Surface Properties That Influence the Self-Cleaning Action of Hydrophobic Plant Leaves

    Get PDF
    It is well established that many leaf surfaces display self-cleaning properties. However, an understanding of how the surface properties interact is still not achieved. Consequently, 12 different leaf types were selected for analysis due to their water repellency and self-cleaning properties. The most hydrophobic surfaces demonstrated splitting of the νs CH2 and ν CH2 bands, ordered platelet-like structures, crystalline waxes, high-surface-roughness values, high-total-surface-free energy and apolar components of surface energy, and low polar and Lewis base components of surface energy. The surfaces that exhibited the least roughness and high polar and Lewis base components of surface energy had intracuticular waxes, yet they still demonstrated the self-cleaning action. Principal component analysis demonstrated that the most hydrophobic species shared common surface chemistry traits with low intra-class variability, while the less hydrophobic leaves had highly variable surface-chemistry characteristics. Despite this, we have shown through partial least squares regression that the leaf water contact angle (i.e., hydrophobicity) can be predicted using attenuated total reflectance Fourier transform infrared spectroscopy surface chemistry data with excellent ability. This is the first time that such a statistical analysis has been performed on a complex biological system. This model could be utilized to investigate and predict the water contact angles of a range of biological surfaces. An understanding of the interplay of properties is extremely important to produce optimized biomimetic surfaces

    Drivers and impact of antifungal therapy in critically ill patients with Aspergillus-positive respiratory tract cultures

    Get PDF
    Invasive pulmonary aspergillosis (IPA) is an increasingly recognised problem in critically ill patients. Little is known about how intensivists react to an Aspergillus-positive respiratory sample or the efficacy of antifungal therapy (AFT). This study aimed to identify drivers of AFT prescription and diagnostic workup in patients with Aspergillus isolation in respiratory specimens as well as the impact of AFT in these patients. ICU patients with an Aspergillus-positive respiratory sample from the database of a previous observational, multicentre study were analysed. Cases were classified as proven/putative IPA or Aspergillus colonisation. Demographic, microbiological, diagnostic and therapeutic data were collected. Outcome was recorded 12 weeks after Aspergillus isolation. Patients with putative/proven IPA were more likely to receive AFT than colonised patients (78.7% vs. 25.5%; P 7) (68.4% vs. 36.9%) (both P < 0.001). Once adjusted for disease severity, initiation of AFT did not alter the odds of survival (HR = 1.40, 95% CI 0.89–2.21). Likewise, treatment within 48 h following diagnosis did not change the clinical outcome (75.7% vs. 61.4%; P = 0.63). Treatment decisions appear to be based on diagnostic criteria and underlying disease severity at the time of Aspergillus isolation. IPA in this population has a dire prognosis and AFT is not associated with reduced mortality. This may be explained by delayed diagnosis and an often inevitable death due to advanced multiorgan failure

    Functional Expression of Spider Neurotoxic Peptide Huwentoxin-I in E. coli

    Get PDF
    The coding sequence of huwentoxin-I, a neurotoxic peptide isolated from the venom of the Chinese spider Ornithoctonus huwena, was amplified by PCR using the cDNA library constructed from the spider venom glands. The cloned fragment was inserted into the expression vector pET-40b and transformed into the E. coli strain BL21 (DE3). The expression of a soluble fusion protein, disulfide interchange protein (DsbC)-huwentoxin-I, was auto-induced in the periplasm of E. coli in the absence of IPTG. After partial purification using a Ni-NTA column, the expressed fusion protein was digested using enterokinase to release heteroexpressed huwentoxin-I and was further purified using RP-HPLC. The resulting peptide was subjected to gel electrophoresis and mass spectrometry analysis. The molecular weight of the heteroexpressed huwentoxin-I was 3750.69, which is identical to that of the natural form of the peptide isolated from spider venom. The physiological properties of the heteroexpressed huwentoxin-I were further analyzed using a whole-cell patch clamp assay. The heteroexpressed huwentoxin-I was able to block currents generated by human Nav1.7 at an IC50 of 640 nmole/L, similar to that of the natural huwentoxin-I, which is 630 nmole/L
    • …
    corecore