466 research outputs found

    A Phylogeny and Timescale for the Evolution of Pseudocheiridae (Marsupialia: Diprotodontia) in Australia and New Guinea

    Get PDF
    Pseudocheiridae (Marsupialia: Diprotodontia) is a family of endemic Australasian arboreal folivores, more commonly known as ringtail possums. Seventeen extant species are grouped into six genera (Pseudocheirus, Pseudochirulus, Hemibelideus, Petauroides, Pseudochirops, Petropseudes). Pseudochirops and Pseudochirulus are the only genera with representatives on New Guinea and surrounding western islands. Here, we examine phylogenetic relationships among 13 of the 17 extant pseudocheirid species based on protein-coding portions of the ApoB, BRCA1, ENAM, IRBP, Rag1, and vWF genes. Maximum parsimony, maximum likelihood, and Bayesian methods were used to estimate phylogenetic relationships. Two different relaxed molecular clock methods were used to estimate divergence times. Bayesian and maximum parsimony methods were used to reconstruct ancestral character states for geographic provenance and maximum elevation occupied. We find robust support for the monophyly of Pseudocheirinae (Pseudochirulus + Pseudocheirus), Hemibelidinae (Hemibelideus + Petauroides), and Pseudochiropsinae (Pseudochirops + Petropseudes), respectively, and for an association of Pseudocheirinae and Hemibelidinae to the exclusion of Pseudochiropsinae. Within Pseudochiropsinae, Petropseudes grouped more closely with the New Guinean Pseudochirops spp. than with the Australian Pseudochirops archeri, rendering Pseudochirops paraphyletic. New Guinean species belonging to Pseudochirops are monophyletic, as are New Guinean species belonging to Pseudochirulus. Molecular dates and ancestral reconstructions of geographic provenance combine to suggest that the ancestors of extant New Guinean Pseudochirops spp. and Pseudochirulus spp. dispersed from Australia to New Guinea ∼12.1–6.5 Ma (Pseudochirops) and ∼6.0–2.4 Ma (Pseudochirulus). Ancestral state reconstructions support the hypothesis that occupation of high elevations (>3000 m) is a derived feature that evolved on the terminal branch leading to Pseudochirops cupreus, and either evolved in the ancestor of Pseudochirulus forbesi, Pseudochirulus mayeri, and Pseudochirulus caroli, with subsequent loss in P. caroli, or evolved independently in P. mayeri and P. forbesi. Divergence times within the New Guinean Pseudochirops clade are generally coincident with the uplift of the central cordillera and other highlands. Diversification within New Guinean Pseudochirulus occurred in the Plio-Pleistocene after the establishment of the Central Range and other highlands

    Neoliberalisation and 'lad cultures' in higher education

    Get PDF
    This paper links HE neoliberalisation and ‘lad cultures’, drawing on interviews and focus groups with women students. We argue that retro-sexist ‘laddish’ forms of masculine competitiveness and misogyny have been reshaped by neoliberal rationalities to become modes of consumerist sexualised audit. We also suggest that neoliberal frameworks scaffold an individualistic and adversarial culture among young people that interacts with perceived threats to men’s privilege and intensifies attempts to put women in their place through misogyny and sexual harassment. Furthermore, ‘lad cultures’, sexism and sexual harassment in higher education may be invisibilised by institutions to preserve marketability in a neoliberal context. In response, we ask if we might foster dialogue and partnership between feminist and anti-marketisation politics

    Audiovisual time perception is spatially specific

    Get PDF
    Our sensory systems face a daily barrage of auditory and visual signals whose arrival times form a wide range of audiovisual asynchronies. These temporal relationships constitute an important metric for the nervous system when surmising which signals originate from common external events. Internal consistency is known to be aided by sensory adaptation: repeated exposure to consistent asynchrony brings perceived arrival times closer to simultaneity. However, given the diverse nature of our audiovisual environment, functionally useful adaptation would need to be constrained to signals that were generated together. In the current study, we investigate the role of two potential constraining factors: spatial and contextual correspondence. By employing an experimental design that allows independent control of both factors, we show that observers are able to simultaneously adapt to two opposing temporal relationships, provided they are segregated in space. No such recalibration was observed when spatial segregation was replaced by contextual stimulus features (in this case, pitch and spatial frequency). These effects provide support for dedicated asynchrony mechanisms that interact with spatially selective mechanisms early in visual and auditory sensory pathways

    First Molecular Epidemiological Study of Cutaneous Leishmaniasis in Libya

    Get PDF
    Cutaneous leishmaniasis (CL) is caused by protozoan parasites of the genus Leishmania. The disease is characterized by the formation of chronic skin lesions followed by permanent scars and deformation of the infected area. It is distributed in many tropical and subtropical countries with more than 2 million cases every year. During the past few years CL has emerged as a major public health problem in Libya. So far, diagnosis was based on clinical symptoms and microscopic observation of parasites. Disease outbreaks were not investigated and the causative leishmanial species of CL were not identified so far. Our study indicates the presence of two coexisting species: Leishmania major and Leishmania tropica. These results are crucial in order to provide accurate treatment, precise prognosis and appropriate public health control measures. The recent armed conflict in Libya that ended with the Gadhafi regime collapse on October 2011 has affected all aspects of the life in the country. In this study we discussed multiple risk factors that could be associated with this conflict and present major challenges that should be considered by local and national health authorities for evaluating the CL burden and highlighting priority actions for disease control

    The Evolution of Bat Vestibular Systems in the Face of Potential Antagonistic Selection Pressures for Flight and Echolocation

    Get PDF
    PMCID: PMC3634842This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Changes in glacial meltwater alter algal communities in lakes of Scoresby Sund, Renland, East Greenland throughout the Holocene: abrupt reorganizations began 1000 years before present

    Get PDF
    We investigated the response of lake algal communities to changes in glacial meltwater from the Renland Ice Cap (Greenland) through the Holocene to assess whether influxes always elicit consistent responses or novel responses. We measured sedimentary algal pigments in two proximal lakes, snow-fed Raven and glacier- and snow-fed Bunny Lake, and diatom community structure and turnover in Bunny Lake. Diatom data were not available in Raven Lake. We also modeled lake-level change in Bunny Lake to identify how glacial meltwater may have altered diatom habitat availability through time. Through a series of glacier advances and retreats over the Holocene, the algal response in Bunny Lake was relatively constant until approximately 1015 yr BP, after which there were major changes in sedimentary algal remains. Algal pigment concentrations sharply declined, and diatom species richness increased. Diatom community structure underwent three reorganizations. Until 1015 yr BP, assemblages were dominated by Pinnularia braunii and Aulacoseira pffaffiana. However, approximately 1015–480 yr BP, these species declined and Tabellaria flocculosa and Hannaea arcus became a significant component of the assemblage. Approximately 440 yr BP, A. pfaffiana increased along with species indicating elevated nitrogen. In contrast, the algal pigment records from nearby snow-fed Raven Lake showed different and minimal change through time. Our results suggest that changes in the magnitude and composition of meltwater in our two study lakes were unique over the last 1000 yr BP and elicited a non-linear threshold response absent during other periods of glacier advance and retreat. Deciphering the degree to which glaciers structure algal communities over time has strong implications for lakes as glaciers continue to recede

    Impact of Deep Coalescence on the Reliability of Species Tree Inference from Different Types of DNA Markers in Mammals

    Get PDF
    An important challenge for phylogenetic studies of closely related species is the existence of deep coalescence and gene tree heterogeneity. However, their effects can vary between species and they are often neglected in phylogenetic analyses. In addition, a practical problem in the reconstruction of shallow phylogenies is to determine the most efficient set of DNA markers for a reliable estimation. To address these questions, we conducted a multilocus simulation study using empirical values of nucleotide diversity and substitution rates obtained from a wide range of mammals and evaluated the performance of both gene tree and species tree approaches to recover the known speciation times and topological relationships. We first show that deep coalescence can be a serious problem, more than usually assumed, for the estimation of speciation times in mammals using traditional gene trees. Furthermore, we tested the performance of different sets of DNA markers in the determination of species trees using a coalescent approach. Although the best estimates of speciation times were obtained, as expected, with the use of an increasing number of nuclear loci, our results show that similar estimations can be obtained with a much lower number of genes and the incorporation of a mitochondrial marker, with its high information content. Thus, the use of the combined information of both nuclear and mitochondrial markers in a species tree framework is the most efficient option to estimate recent speciation times and, consequently, the underlying species tree

    Cryptochrome 1 in Retinal Cone Photoreceptors Suggests a Novel Functional Role in Mammals

    Get PDF
    Cryptochromes are a ubiquitous group of blue-light absorbing flavoproteins that in the mammalian retina have an important role in the circadian clock. In birds, cryptochrome 1a (Cry1a), localized in the UV/violet-sensitive S1 cone photoreceptors, is proposed to be the retinal receptor molecule of the light-dependent magnetic compass. The retinal localization of mammalian Cry1, homologue to avian Cry1a, is unknown, and it is open whether mammalian Cry1 is also involved in magnetic field sensing. To constrain the possible role of retinal Cry1, we immunohistochemically analysed 90 mammalian species across 48 families in 16 orders, using an antiserum against the Cry1 C-terminus that in birds labels only the photo-activated conformation. In the Carnivora families Canidae, Mustelidae and Ursidae, and in some Primates, Cry1 was consistently labeled in the outer segment of the shortwave-sensitive S1 cones. This finding would be compatible with a magnetoreceptive function of Cry1 in these taxa. In all other taxa, Cry1 was not detected by the antiserum that likely also in mammals labels the photo-activated conformation, although Western blots showed Cry1 in mouse retinal cell nuclei. We speculate that in the mouse and the other negative-tested mammals Cry1 is involved in circadian functions as a non-light-responsive protein
    corecore