449 research outputs found

    The Spectral Action for Dirac Operators with skew-symmetric Torsion

    Full text link
    We derive a formula for the gravitational part of the spectral action for Dirac operators on 4-dimensional manifolds with totally anti-symmetric torsion. We find that the torsion becomes dynamical and couples to the traceless part of the Riemann curvature tensor. Finally we deduce the Lagrangian for the Standard Model of particle physics in presence of torsion from the Chamseddine-Connes Dirac operator.Comment: Longer introduction and conclusion adde

    The Holst Action by the Spectral Action Principle

    Full text link
    We investigate the Holst action for closed Riemannian 4-manifolds with orthogonal connections. For connections whose torsion has zero Cartan type component we show that the Holst action can be recovered from the heat asymptotics for the natural Dirac operator acting on left-handed spinor fields.Comment: We correct a sign mistake in Proposition 2.3. As a consequence the main result (Theorem 3.4) becomes more natura

    Specialized astrocytes mediate glutamatergic gliotransmission in the CNS

    Get PDF
    Multimodal astrocyte–neuron communications govern brain circuitry assembly and function1. For example, through rapid glutamate release, astrocytes can control excitability, plasticity and synchronous activity2,3 of synaptic networks, while also contributing to their dysregulation in neuropsychiatric conditions4–7. For astrocytes to communicate through fast focal glutamate release, they should possess an apparatus for Ca2+-dependent exocytosis similar to neurons8–10. However, the existence of this mechanism has been questioned11–13 owing to inconsistent data14–17 and a lack of direct supporting evidence. Here we revisited the astrocyte glutamate exocytosis hypothesis by considering the emerging molecular heterogeneity of astrocytes18–21 and using molecular, bioinformatic and imaging approaches, together with cell-specific genetic tools that interfere with glutamate exocytosis in vivo. By analysing existing single-cell RNA-sequencing databases and our patch-seq data, we identified nine molecularly distinct clusters of hippocampal astrocytes, among which we found a notable subpopulation that selectively expressed synaptic-like glutamate-release machinery and localized to discrete hippocampal sites. Using GluSnFR-based glutamate imaging22 in situ and in vivo, we identified a corresponding astrocyte subgroup that responds reliably to astrocyte-selective stimulations with subsecond glutamate release events at spatially precise hotspots, which were suppressed by astrocyte-targeted deletion of vesicular glutamate transporter 1 (VGLUT1). Furthermore, deletion of this transporter or its isoform VGLUT2 revealed specific contributions of glutamatergic astrocytes in cortico-hippocampal and nigrostriatal circuits during normal behaviour and pathological processes. By uncovering this atypical subpopulation of specialized astrocytes in the adult brain, we provide insights into the complex roles of astrocytes in central nervous system (CNS) physiology and diseases, and identify a potential therapeutic target

    Neuromuscular imaging in inherited muscle diseases

    Get PDF
    Driven by increasing numbers of newly identified genetic defects and new insights into the field of inherited muscle diseases, neuromuscular imaging in general and magnetic resonance imaging (MRI) in particular are increasingly being used to characterise the severity and pattern of muscle involvement. Although muscle biopsy is still the gold standard for the establishment of the definitive diagnosis, muscular imaging is an important diagnostic tool for the detection and quantification of dystrophic changes during the clinical workup of patients with hereditary muscle diseases. MRI is frequently used to describe muscle involvement patterns, which aids in narrowing of the differential diagnosis and distinguishing between dystrophic and non-dystrophic diseases. Recent work has demonstrated the usefulness of muscle imaging for the detection of specific congenital myopathies, mainly for the identification of the underlying genetic defect in core and centronuclear myopathies. Muscle imaging demonstrates characteristic patterns, which can be helpful for the differentiation of individual limb girdle muscular dystrophies. The aim of this review is to give a comprehensive overview of current methods and applications as well as future perspectives in the field of neuromuscular imaging in inherited muscle diseases. We also provide diagnostic algorithms that might guide us through the differential diagnosis in hereditary myopathies

    Cobalt(II) Bipyrazolate Metal-Organic Frameworks as Heterogeneous Catalysts in Cumene Aerobic Oxidation: A Tag-Dependent Selectivity

    Full text link
    "This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.inorgchem.0c00481"[EN] Three metal-organic frameworks with the general formula Co(BPZX) (BPZX(2-) = 3-X-4,4'-bipyrazolate, X = H, NH2, NO2) constructed with ligands having different functional groups on the same skeleton have been employed as heterogeneous catalysts for aerobic liquid-phase oxidation of cumene with O-2 as oxidant. O-2 adsorption isotherms collected at p(O2) = 1 atm and T = 195 and 273 K have cast light on the relative affinity of these catalysts for dioxygen. The highest gas uptake at 195 K is found for Co(BPZ) (3.2 mmol/g (10.1 wt % O-2)), in line with its highest BET specific surface area (926 m(2)/g) in comparison with those of Co(BPZNH(2)) (317 m(2)/g) and Co(BPZNO(2)) (645 m(2)/g). The O-2 isosteric heat of adsorption (Q(2)) trend follows the order Co(BPZ) > Co(BPZNH(2)) > Co(BPZNO(2)). Interestingly, the selectivity in the cumene oxidation products was found to be dependent on the tag present in the catalyst linker: while cumene hydroperoxide (CHP) is the main product obtained with Co(BPZ) (84% selectivity to CHP after 7 h, p(O2) = 4 bar, and T = 363 K), further oxidation to 2-phenyl-2-propanol (PP) is observed in the presence of Co(BPZNH(2)) as the catalyst (69% selectivity to PP under the same experimental conditions).S.G., R.V., and M.M. acknowledge Universita dell'Insubria for partial funding. G.G. thanks the Italian MIUR through the PRIN 2017 Project Multi-e: Multielectron Transfer for the Conversion of Small Molecules: an Enabling Technology for the Chemical Use of Renewable Energy (20179337R7) for financial support. G.G. thanks the TRAINER project (Catalysts for Transition to Renewable Energy Future) ref. ANR-17-MPGA-0017 for support. C.P. thanks the University of Camerino and the Italian MIUR throughout the PRIN 2015 Project Towards a Sustainable Chemistry (20154 x 9ATP_002). This project has also received funding from the European Union's Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 641887 (project acronym: DEFNET) and the Spanish Government through projects MAT2017-82288-C2-1-P and Severo Ochoa (SEV-2016-0683). Professor Norberto Masciocchi (University of Insubria, Como, Italy) is acknowledged for fruitful discussions. The authors are also grateful to Dr. Giulia Tuci (CNR-ICCOM Florence, Italy) for help with the XPS curve fitting. The Microscopy Service of the Universitat PolitĂšcnica de ValĂšncia is gratefully acknowledged for the electron microscopy measurements.Nowacka, AE.; Vismara, R.; Mercuri, G.; Moroni, M.; Palomino Roca, M.; Domasevitch, K.; Di Nicola, C.... (2020). Cobalt(II) Bipyrazolate Metal-Organic Frameworks as Heterogeneous Catalysts in Cumene Aerobic Oxidation: A Tag-Dependent Selectivity. Inorganic Chemistry. 59(12):8161-8172. https://doi.org/10.1021/acs.inorgchem.0c00481S816181725912Fortuin, J. P., & Waterman, H. I. (1953). Production of phenol from cumene. Chemical Engineering Science, 2(4), 182-192. doi:10.1016/0009-2509(53)80040-0Luyben, W. L. (2009). Design and Control of the Cumene Process. Industrial & Engineering Chemistry Research, 49(2), 719-734. doi:10.1021/ie9011535Matsui, S., & Fujita, T. (2001). New cumene-oxidation systems. Catalysis Today, 71(1-2), 145-152. doi:10.1016/s0920-5861(01)00450-3Opeida, I. A., Kytsya, A. R., Bazylyak, L. I., & Pobigun, O. I. (2017). Silver Nanoparticle Catalysis of the Liquid-Phase Radical Chain Oxidation of Cumene by Molecular Oxygen. Theoretical and Experimental Chemistry, 52(6), 369-374. doi:10.1007/s11237-017-9492-zTsodikov, M. V., Kugel, V. Y., Slivinskii, E. V., Bondarenko, G. N., Maksimov, Y. V., Alvarez, M. A., 
 Navio, J. A. (2000). Selectivity and mechanism of cumene liquid-phase oxidation in the presence of powdered mixed iron–aluminum oxides prepared by alkoxy method. Applied Catalysis A: General, 193(1-2), 237-242. doi:10.1016/s0926-860x(99)00438-xZhang, M., Wang, L., Ji, H., Wu, B., & Zeng, X. (2007). Cumene Liquid Oxidation to Cumene Hydroperoxide over CuO Nanoparticle with Molecular Oxygen under Mild Condition. Journal of Natural Gas Chemistry, 16(4), 393-398. doi:10.1016/s1003-9953(08)60010-9Hsu, Y. F., & Cheng, C. P. (1998). Mechanistic investigation of the autooxidation of cumene catalyzed by transition metal salts supported on polymer. Journal of Molecular Catalysis A: Chemical, 136(1), 1-11. doi:10.1016/s1381-1169(98)00016-8Hsu, Y. F., & Cheng, C. P. (1997). Polymer supported catalyst for the effective autoxidation of cumene to cumene hydroperoxide. Journal of Molecular Catalysis A: Chemical, 120(1-3), 109-116. doi:10.1016/s1381-1169(96)00442-6Ying Fang, H., Mei Huei, Y., & Cheu Pyeng, C. (1996). Autooxidation of cumene catalyzed by transition metal compounds on polymeric supports. Journal of Molecular Catalysis A: Chemical, 105(3), 137-144. doi:10.1016/1381-1169(95)00205-7Narulkar, D. D., Srivastava, A. K., Butcher, R. J., Ansy, K. M., & Dhuri, S. N. (2017). Synthesis and characterization of N3Py2 ligand-based cobalt(II), nickel(II) and copper(II) catalysts for efficient conversion of hydrocarbons to alcohols. Inorganica Chimica Acta, 467, 405-414. doi:10.1016/j.ica.2017.08.027Wang, R.-M., Duan, Z.-F., He, Y.-F., & Lei, Z.-Q. (2006). Heterogeneous catalytic aerobic oxidation behavior of Co–Na heterodinuclear polymeric complex of Salen-crown ether. Journal of Molecular Catalysis A: Chemical, 260(1-2), 280-287. doi:10.1016/j.molcata.2006.07.049Rogovin, M., & Neumann, R. (1999). Silicate xerogels containing cobalt as heterogeneous catalysts for the side-chain oxidation of alkyl aromatic compounds with tert-butyl hydroperoxide. Journal of Molecular Catalysis A: Chemical, 138(2-3), 315-318. doi:10.1016/s1381-1169(98)00207-6KonopiƄska, A. (2017). <i>N</i>-Hydroxyphthalimide as a Catalyst of Cumene Oxidation with Hydroperoxide. Modern Chemistry, 5(2), 29. doi:10.11648/j.mc.20170502.12VARMA, G. (1973). Heterogeneous catalytic oxidation of cumene (isopropyl benzene) in liquid phase. Journal of Catalysis, 28(2), 236-244. doi:10.1016/0021-9517(73)90006-7Collom, S. L., Bloomfield, A. J., & Anastas, P. T. (2016). Advancing Sustainable Manufacturing through a Heterogeneous Cobalt Catalyst for Selective C–H Oxidation. Industrial & Engineering Chemistry Research, 55(12), 3308-3312. doi:10.1021/acs.iecr.5b03674Scognamiglio, J., Jones, L., Letizia, C. S., & Api, A. M. (2012). Fragrance material review on 2-phenyl-2-propanol. Food and Chemical Toxicology, 50, S130-S133. doi:10.1016/j.fct.2011.10.011Rossin, A., Tuci, G., Luconi, L., & Giambastiani, G. (2017). Metal–Organic Frameworks as Heterogeneous Catalysts in Hydrogen Production from Lightweight Inorganic Hydrides. ACS Catalysis, 7(8), 5035-5045. doi:10.1021/acscatal.7b01495Chughtai, A. H., Ahmad, N., Younus, H. A., Laypkov, A., & Verpoort, F. (2015). Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chemical Society Reviews, 44(19), 6804-6849. doi:10.1039/c4cs00395kLiu, J., Chen, L., Cui, H., Zhang, J., Zhang, L., & Su, C.-Y. (2014). Applications of metal–organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev., 43(16), 6011-6061. doi:10.1039/c4cs00094cGascon, J., Corma, A., Kapteijn, F., & LlabrĂ©s i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959kLuo, S., Zeng, Z., Zeng, G., Liu, Z., Xiao, R., Chen, M., 
 Jiang, D. (2019). Metal Organic Frameworks as Robust Host of Palladium Nanoparticles in Heterogeneous Catalysis: Synthesis, Application, and Prospect. ACS Applied Materials & Interfaces, 11(36), 32579-32598. doi:10.1021/acsami.9b11990Deng, X., Li, Z., & GarcĂ­a, H. (2017). Visible Light Induced Organic Transformations Using Metal-Organic-Frameworks (MOFs). Chemistry - A European Journal, 23(47), 11189-11209. doi:10.1002/chem.201701460Dhakshinamoorthy, A., Asiri, A. M., & Garcia, H. (2016). Metal-Organic Frameworks as Catalysts for Oxidation Reactions. Chemistry - A European Journal, 22(24), 8012-8024. doi:10.1002/chem.201505141Song, X., Hu, D., Yang, X., Zhang, H., Zhang, W., Li, J., 
 Yu, J. (2019). Polyoxomolybdic Cobalt Encapsulated within Zr-Based Metal–Organic Frameworks as Efficient Heterogeneous Catalysts for Olefins Epoxidation. ACS Sustainable Chemistry & Engineering, 7(3), 3624-3631. doi:10.1021/acssuschemeng.8b06736Zhang, T., Hu, Y.-Q., Han, T., Zhai, Y.-Q., & Zheng, Y.-Z. (2018). Redox-Active Cobalt(II/III) Metal–Organic Framework for Selective Oxidation of Cyclohexene. ACS Applied Materials & Interfaces, 10(18), 15786-15792. doi:10.1021/acsami.7b19323Ma, Y., Peng, H., Liu, J., Wang, Y., Hao, X., Feng, X., 
 Li, Y. (2018). Polyoxometalate-Based Metal–Organic Frameworks for Selective Oxidation of Aryl Alkenes to Aldehydes. Inorganic Chemistry, 57(7), 4109-4116. doi:10.1021/acs.inorgchem.8b00282Othong, J., Boonmak, J., Ha, J., Leelasubcharoen, S., & Youngme, S. (2017). Thermally Induced Single-Crystal-to-Single-Crystal Transformation and Heterogeneous Catalysts for Epoxidation Reaction of Co(II) Based Metal–Organic Frameworks Containing 1,4-Phenylenediacetic Acid. Crystal Growth & Design, 17(4), 1824-1835. doi:10.1021/acs.cgd.6b01788Wang, J.-C., Ding, F.-W., Ma, J.-P., Liu, Q.-K., Cheng, J.-Y., & Dong, Y.-B. (2015). Co(II)-MOF: A Highly Efficient Organic Oxidation Catalyst with Open Metal Sites. Inorganic Chemistry, 54(22), 10865-10872. doi:10.1021/acs.inorgchem.5b01938Tuci, G., Giambastiani, G., Kwon, S., Stair, P. C., Snurr, R. Q., & Rossin, A. (2014). Chiral Co(II) Metal–Organic Framework in the Heterogeneous Catalytic Oxidation of Alkenes under Aerobic and Anaerobic Conditions. ACS Catalysis, 4(3), 1032-1039. doi:10.1021/cs401003dHamidipour, L., & Farzaneh, F. (2013). Cobalt metal organic framework as an efficient heterogeneous catalyst for the oxidation of alkanes and alkenes. Reaction Kinetics, Mechanisms and Catalysis, 109(1), 67-75. doi:10.1007/s11144-012-0533-2Luz, I., LeĂłn, A., Boronat, M., LlabrĂ©s i Xamena, F. X., & Corma, A. (2013). Selective aerobic oxidation of activated alkanes with MOFs and their use for epoxidation of olefins with oxygen in a tandem reaction. Catal. Sci. Technol., 3(2), 371-379. doi:10.1039/c2cy20449eSantiago-Portillo, A., NavalĂłn, S., Cirujano, F. G., Xamena, F. X. L. i, Alvaro, M., & Garcia, H. (2015). MIL-101 as Reusable Solid Catalyst for Autoxidation of Benzylic Hydrocarbons in the Absence of Additional Oxidizing Reagents. ACS Catalysis, 5(6), 3216-3224. doi:10.1021/acscatal.5b00411Nowacka, A., Briantais, P., Prestipino, C., & LlabrĂ©s i Xamena, F. X. (2019). Selective Aerobic Oxidation of Cumene to Cumene Hydroperoxide over Mono- and Bimetallic Trimesate Metal–Organic Frameworks Prepared by a Facile «Green» Aqueous Synthesis. ACS Sustainable Chemistry & Engineering, 7(8), 7708-7715. doi:10.1021/acssuschemeng.8b06472Vismara, R., Tuci, G., Tombesi, A., Domasevitch, K. V., Di Nicola, C., Giambastiani, G., 
 Galli, S. (2019). Tuning Carbon Dioxide Adsorption Affinity of Zinc(II) MOFs by Mixing Bis(pyrazolate) Ligands with N-Containing Tags. ACS Applied Materials & Interfaces, 11(30), 26956-26969. doi:10.1021/acsami.9b08015Vismara, R., Tuci, G., Mosca, N., Domasevitch, K. V., Di Nicola, C., Pettinari, C., 
 Rossin, A. (2019). Amino-decorated bis(pyrazolate) metal–organic frameworks for carbon dioxide capture and green conversion into cyclic carbonates. Inorganic Chemistry Frontiers, 6(2), 533-545. doi:10.1039/c8qi00997jMosca, N., Vismara, R., Fernandes, J. A., Tuci, G., Di Nicola, C., Domasevitch, K. V., 
 Galli, S. (2018). Nitro-Functionalized Bis(pyrazolate) Metal-Organic Frameworks as Carbon Dioxide Capture Materials under Ambient Conditions. Chemistry - A European Journal, 24(50), 13170-13180. doi:10.1002/chem.201802240Pettinari, C., Tăbăcaru, A., & Galli, S. (2016). Coordination polymers and metal–organic frameworks based on poly(pyrazole)-containing ligands. Coordination Chemistry Reviews, 307, 1-31. doi:10.1016/j.ccr.2015.08.005Pettinari, C., Tăbăcaru, A., Boldog, I., Domasevitch, K. V., Galli, S., & Masciocchi, N. (2012). Novel Coordination Frameworks Incorporating the 4,4â€Č-Bipyrazolyl Ditopic Ligand. Inorganic Chemistry, 51(9), 5235-5245. doi:10.1021/ic3001416Colombo, V., Montoro, C., Maspero, A., Palmisano, G., Masciocchi, N., Galli, S., 
 Navarro, J. A. R. (2012). Tuning the Adsorption Properties of Isoreticular Pyrazolate-Based Metal–Organic Frameworks through Ligand Modification. Journal of the American Chemical Society, 134(30), 12830-12843. doi:10.1021/ja305267mTăbăcaru, A., Pettinari, C., Masciocchi, N., Galli, S., Marchetti, F., & Angjellari, M. (2011). Pro-porous Coordination Polymers of the 1,4-Bis((3,5-dimethyl-1H-pyrazol-4-yl)-methyl)benzene Ligand with Late Transition Metals. Inorganic Chemistry, 50(22), 11506-11513. doi:10.1021/ic2013705Colombo, V., Galli, S., Choi, H. J., Han, G. D., Maspero, A., Palmisano, G., 
 Long, J. R. (2011). High thermal and chemical stability in pyrazolate-bridged metal–organic frameworks with exposed metal sites. Chemical Science, 2(7), 1311. doi:10.1039/c1sc00136aMasciocchi, N., Galli, S., Colombo, V., Maspero, A., Palmisano, G., Seyyedi, B., 
 Bordiga, S. (2010). Cubic Octanuclear Ni(II) Clusters in Highly Porous Polypyrazolyl-Based Materials. Journal of the American Chemical Society, 132(23), 7902-7904. doi:10.1021/ja102862jGalli, S., Masciocchi, N., Colombo, V., Maspero, A., Palmisano, G., LĂłpez-GarzĂłn, F. J., 
 Navarro, J. A. R. (2010). Adsorption of Harmful Organic Vapors by Flexible Hydrophobic Bis-pyrazolate Based MOFs. Chemistry of Materials, 22(5), 1664-1672. doi:10.1021/cm902899tBoldog, I., Sieler, J., Chernega, A. N., & Domasevitch, K. V. (2002). 4,4â€Č-Bipyrazolyl: new bitopic connector for construction of coordination networks. Inorganica Chimica Acta, 338, 69-77. doi:10.1016/s0020-1693(02)00902-7Domasevitch, K. V., Gospodinov, I., Krautscheid, H., Klapötke, T. M., & Stierstorfer, J. (2019). Facile and selective polynitrations at the 4-pyrazolyl dual backbone: straightforward access to a series of high-density energetic materials. New Journal of Chemistry, 43(3), 1305-1312. doi:10.1039/c8nj05266bTOPAS-Academic 6; Bruker, by Coelho Software: Brisbane, Australia, 2016.Coelho, A. A. (2003). Indexing of powder diffraction patterns by iterative use of singular value decomposition. Journal of Applied Crystallography, 36(1), 86-95. doi:10.1107/s0021889802019878Cheetham, A. K., Bennett, T. D., Coudert, F.-X., & Goodwin, A. L. (2016). Defects and disorder in metal organic frameworks. Dalton Transactions, 45(10), 4113-4126. doi:10.1039/c5dt04392aCliffe, M. J., Wan, W., Zou, X., Chater, P. A., Kleppe, A. K., Tucker, M. G., 
 Goodwin, A. L. (2014). Correlated defect nanoregions in a metal–organic framework. Nature Communications, 5(1). doi:10.1038/ncomms5176Spirkl, S., Grzywa, M., & Volkmer, D. (2018). Synthesis and characterization of a flexible metal organic framework generated from MnIII and the 4,4â€Č-bipyrazolate-ligand. Dalton Transactions, 47(26), 8779-8786. doi:10.1039/c8dt01185kNazarenko, O. M., Rusanov, E. B., Chernega, A. N., & Domasevitch, K. V. (2013). Cobalt(II) and cadmium(II) square grids supported with 4,4â€Č-bipyrazole and accommodating 3-carboxyadamantane-1-carboxylate. Acta Crystallographica Section C Crystal Structure Communications, 69(3), 232-236. doi:10.1107/s0108270113003405Tăbăcaru, A., Pettinari, C., Marchetti, F., di Nicola, C., Domasevitch, K. V., Galli, S., 
 Cocchioni, M. (2012). Antibacterial Action of 4,4â€Č-Bipyrazolyl-Based Silver(I) Coordination Polymers Embedded in PE Disks. Inorganic Chemistry, 51(18), 9775-9788. doi:10.1021/ic3011635Sun, Q.-F., Wong, K. M.-C., Liu, L.-X., Huang, H.-P., Yu, S.-Y., Yam, V. W.-W., 
 Yu, K.-C. (2008). Self-Assembly, Structures, and Photophysical Properties of 4,4â€Č-Bipyrazolate-Linked Metallo-Macrocycles with Dimetal Clips. Inorganic Chemistry, 47(6), 2142-2154. doi:10.1021/ic701344pLozan, V., Solntsev, P. Y., Leibeling, G., Domasevitch, K. V., & Kersting, B. (2007). Tetranuclear Nickel Complexes Composed of Pairs of Dinuclear LNi2 Fragments Linked by 4,4â€Č-Bipyrazolyl, 1,4-Bis(4â€Č-pyrazolyl)benzene, and 4,4â€Č-Bipyridazine: Synthesis, Structures, and Magnetic Properties. European Journal of Inorganic Chemistry, 2007(20), 3217-3226. doi:10.1002/ejic.200700317Bond distances and angles for the rigid body describing the ligand: C–C and C-N of the pyrazole ring 1.36 Å; exocyclic C–C 1.40 Å; C–H of the pyrazole ring 0.95 Å; C–NNH2 1.40 Å; N–H 0.95 Å; pyrazole ring internal and external bond angles 108 and 126°, respectively; angles at the nitrogen atom of the amino group 120°.Coelho, A. A. (2000). Whole-profile structure solution from powder diffraction data using simulated annealing. Journal of Applied Crystallography, 33(3), 899-908. doi:10.1107/s002188980000248xCheary, R. W., & Coelho, A. (1992). A fundamental parameters approach to X-ray line-profile fitting. Journal of Applied Crystallography, 25(2), 109-121. doi:10.1107/s0021889891010804Stephens, P. W. (1999). Phenomenological model of anisotropic peak broadening in powder diffraction. Journal of Applied Crystallography, 32(2), 281-289. doi:10.1107/s0021889898006001Rouquerol, J., Llewellyn, P., & Rouquerol, F. (2007). Is the bet equation applicable to microporous adsorbents? Characterization of Porous Solids VII - Proceedings of the 7th International Symposium on the Characterization of Porous Solids (COPS-VII), Aix-en-Provence, France, 26-28 May 2005, 49-56. doi:10.1016/s0167-2991(07)80008-5Saeidi, N., & Parvini, M. (2015). Accuracy of Dubinin-Astakov and Dubinin-Raduchkevic Adsorption Isotherm Models in Evaluating Micropore Volume of Bontonite. Periodica Polytechnica Chemical Engineering. doi:10.3311/ppch.8374Zhu, X., Tian, C., Veith, G. M., Abney, C. W., Dehaudt, J., & Dai, S. (2016). In Situ Doping Strategy for the Preparation of Conjugated Triazine Frameworks Displaying Efficient CO2 Capture Performance. Journal of the American Chemical Society, 138(36), 11497-11500. doi:10.1021/jacs.6b07644Zhu, X., Mahurin, S. M., An, S.-H., Do-Thanh, C.-L., Tian, C., Li, Y., 
 Dai, S. (2014). Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups. Chemical Communications, 50(59), 7933. doi:10.1039/c4cc01588fSpek, A. L. (2009). Structure validation in chemical crystallography. Acta Crystallographica Section D Biological Crystallography, 65(2), 148-155. doi:10.1107/s090744490804362xBlatov, V. A., Shevchenko, A. P., & Proserpio, D. M. (2014). Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Crystal Growth & Design, 14(7), 3576-3586. doi:10.1021/cg500498kTonigold, M., Lu, Y., Mavrandonakis, A., Puls, A., Staudt, R., Möllmer, J., 
 Volkmer, D. (2011). Pyrazolate-Based Cobalt(II)-Containing Metal-Organic Frameworks in Heterogeneous Catalytic Oxidation Reactions: Elucidating the Role of Entatic States for Biomimetic Oxidation Processes. Chemistry - A European Journal, 17(31), 8671-8695. doi:10.1002/chem.201003173Ma, S., & Zhou, H.-C. (2006). A Metal−Organic Framework with Entatic Metal Centers Exhibiting High Gas Adsorption Affinity. Journal of the American Chemical Society, 128(36), 11734-11735. doi:10.1021/ja063538zWang, Z.-J., Lv, J.-J., Yi, R.-N., Xiao, M., Feng, J.-J., Liang, Z.-W., 
 Xu, X. (2018). Nondirecting Group sp 3 C−H Activation for Synthesis of Bibenzyls via Homo-coupling as Catalyzed by Reduced Graphene Oxide Supported PtPd@Pt Porous Nanospheres. Advanced Synthesis & Catalysis, 360(5), 932-941. doi:10.1002/adsc.201701389CASEMIER, J. (1973). The oxidation of cumene and the decomposition of cumene hydroperoxide on silver, copper, and platinum. Journal of Catalysis, 29(3), 367-373. doi:10.1016/0021-9517(73)90242-xLiao, S., Chi, Y., Yu, H., Wang, H., & Peng, F. (2014). Tuning the Selectivity in the Aerobic Oxidation of Cumene Catalyzed by Nitrogen-Doped Carbon Nanotubes. ChemCatChem, 6(2), 555-560. doi:10.1002/cctc.201300909Silvestre-Albero, J. (2001). Characterization of microporous solids by immersion calorimetry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 187-188(1-3), 151-165. doi:10.1016/s0927-7757(01)00620-3Everett, D. H. (1972). Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure and Applied Chemistry, 31(4), 577-638. doi:10.1351/pac197231040577Liu, C., Wang, T., Ji, J., Wang, C., Wang, H., Jin, P., 
 Jiang, J. (2019). The effect of pore size and layer number of metal–porphyrin coordination nanosheets on sensing DNA. Journal of Materials Chemistry C, 7(33), 10240-10246. doi:10.1039/c9tc02778eGong, T., Yang, X., Fang, J.-J., Sui, Q., Xi, F.-G., & Gao, E.-Q. (2017). Distinct Chromic and Magnetic Properties of Metal–Organic Frameworks with a Redox Ligand. ACS Applied Materials & Interfaces, 9(6), 5503-5512. doi:10.1021/acsami.6b15540Yamada, Y., Kim, J., Matsuo, S., & Sato, S. (2014). Nitrogen-containing graphene analyzed by X-ray photoelectron spectroscopy. Carbon, 70, 59-74. doi:10.1016/j.carbon.2013.12.061Singhbabu, Y. N., Kumari, P., Parida, S., & Sahu, R. K. (2014). Conversion of pyrazoline to pyrazole in hydrazine treated N-substituted reduced graphene oxide films obtained by ion bombardment and their electrical properties. Carbon, 74, 32-43. doi:10.1016/j.carbon.2014.02.079Dementjev, A. ., de Graaf, A., van de Sanden, M. C. ., Maslakov, K. ., Naumkin, A. ., & Serov, A. . (2000). X-Ray photoelectr

    On the energy functional on Finsler manifolds and applications to stationary spacetimes

    Full text link
    In this paper we first study some global properties of the energy functional on a non-reversible Finsler manifold. In particular we present a fully detailed proof of the Palais--Smale condition under the completeness of the Finsler metric. Moreover we define a Finsler metric of Randers type, which we call Fermat metric, associated to a conformally standard stationary spacetime. We shall study the influence of the Fermat metric on the causal properties of the spacetime, mainly the global hyperbolicity. Moreover we study the relations between the energy functional of the Fermat metric and the Fermat principle for the light rays in the spacetime. This allows us to obtain existence and multiplicity results for light rays, using the Finsler theory. Finally the case of timelike geodesics with fixed energy is considered.Comment: 23 pages, AMSLaTeX. v4 matches the published versio

    Specific Learning Disorders (SLD) and behavior impairment: Comorbidity or specific profile?

    Get PDF
    Specific Learning Disorder (SLD) is a neurodevelopmental disorder characterized by difficulties in perceiving and processing verbal and non-verbal information. It is usually accompanied by impaired academic skills leading to school dropout and emotional disturbances, resulting in significant distress and behavioral problems. Methods: A cognitive, academic, and emotional-behavioral assessment was performed at T0 and T1 in children and adolescents with SLD. Participants received psychotherapy and speech therapy treatment from T0 to T1. Results: In SLD,the most compromised cognitive functions were working memory and writing skills. An impact on academic abilities was found. Children and adolescents with SLD experience greater anxiety and depression levels compared to their control peers. Conclusions: SLD may adversely influence psychological well-being. To counteract such a consequence, more specific cognitive and academic skill-oriented strategies should be taken into consideration

    Asymmetric response of forest and grassy biomes to climate variability across the African Humid Period : influenced by anthropogenic disturbance?

    Get PDF
    A comprehensive understanding of the relationship between land cover, climate change and disturbance dynamics is needed to inform scenarios of vegetation change on the African continent. Although significant advances have been made, large uncertainties exist in projections of future biodiversity and ecosystem change for the world's largest tropical landmass. To better illustrate the effects of climate–disturbance–ecosystem interactions on continental‐scale vegetation change, we apply a novel statistical multivariate envelope approach to subfossil pollen data and climate model outputs (TraCE‐21ka). We target paleoenvironmental records across continental Africa, from the African Humid Period (AHP: ca 14 700–5500 yr BP) – an interval of spatially and temporally variable hydroclimatic conditions – until recent times, to improve our understanding of overarching vegetation trends and to compare changes between forest and grassy biomes (savanna and grassland). Our results suggest that although climate variability was the dominant driver of change, forest and grassy biomes responded asymmetrically: 1) the climatic envelope of grassy biomes expanded, or persisted in increasingly diverse climatic conditions, during the second half of the AHP whilst that of forest did not; 2) forest retreat occurred much more slowly during the mid to late Holocene compared to the early AHP forest expansion; and 3) as forest and grassy biomes diverged during the second half of the AHP, their ecological relationship (envelope overlap) fundamentally changed. Based on these asymmetries and associated changes in human land use, we propose and discuss three hypotheses about the influence of anthropogenic disturbance on continental‐scale vegetation change

    A High-Quality Bonobo Genome Refines The Analysis Of Hominid Evolution

    Get PDF
    The divergence of chimpanzee and bonobo provides one of the few examples of recent hominid speciation(1,2). Here we describe a fully annotated, high-quality bonobo genome assembly, which was constructed without guidance from reference genomes by applying a multiplatform genomics approach. We generate a bonobo genome assembly in which more than 98% of genes are completely annotated and 99% of the gaps are closed, including the resolution of about half of the segmental duplications and almost all of the full-length mobile elements. We compare the bonobo genome to those of other great apes(1,3-5) and identify more than 5,569 fixed structural variants that specifically distinguish the bonobo and chimpanzee lineages. We focus on genes that have been lost, changed in structure or expanded in the last few million years of bonobo evolution. We produce a high-resolution map of incomplete lineage sorting and estimate that around 5.1% of the human genome is genetically closer to chimpanzee or bonobo and that more than 36.5% of the genome shows incomplete lineage sorting if we consider a deeper phylogeny including gorilla and orangutan. We also show that 26% of the segments of incomplete lineage sorting between human and chimpanzee or human and bonobo are non-randomly distributed and that genes within these clustered segments show significant excess of amino acid replacement compared to the rest of the genome

    Determining minimal clinically important differences in the Hammersmith Functional Motor Scale Expanded for untreated spinal muscular atrophy patients: An international study

    Get PDF
    \ua9 2024 The Authors. European Journal of Neurology published by John Wiley & Sons Ltd on behalf of European Academy of Neurology.Background and purpose: Spinal muscular atrophy (SMA) is a rare and progressive neuromuscular disorder with varying severity levels. The aim of the study was to calculate minimal clinically important difference (MCID), minimal detectable change (MDC), and values for the Hammersmith Functional Motor Scale Expanded (HFMSE) in an untreated international SMA cohort. Methods: The study employed two distinct methods. MDC was calculated using distribution-based approaches to consider standard error of measurement and effect size change in a population of 321 patients (176 SMA II and 145 SMA III), allowing for stratification based on age and function. MCID was assessed using anchor-based methods (receiver operating characteristic [ROC] curve analysis and standard error) on 76 patients (52 SMA II and 24 SMA III) for whom the 12-month HFMSE could be anchored to a caregiver-reported clinical perception questionnaire. Results: With both approaches, SMA type II and type III patients had different profiles. The MCID, using ROC analysis, identified optimal cutoff points of −2 for type II and −4 for type III patients, whereas using the standard error we found the optimal cutoff points to be 1.5 for improvement and −3.2 for deterioration. Furthermore, distribution-based methods uncovered varying values across age and functional status subgroups within each SMA type. Conclusions: These results emphasize that the interpretation of a single MCID or MDC value obtained in large cohorts with different functional status needs to be made with caution, especially when these may be used to assess possible responses to new therapies
    • 

    corecore