94 research outputs found

    Nature inspired architecture: Integrative computational design and fabrication for filamentous structures

    Get PDF
    Inspiration found in nature, together with advances in computational design and robotic fabrication, challenge existing approaches in building technology in a surprising manner, or even point out completely different possibilities. Biology offers an almost inexhaustible reservoir of principles of form, structure and process that can be transferred to architecture. At the same time, computation profoundly transforms the building industry. Our presentation will introduce ways of tapping the full potential of digital technologies in architecture and construction through inspiration by nature, in order to go beyond the mere digitalization of established planning procedures and the automation of existing building processes towards truly integrative computational design and construction. Along the example of large-scale, load-bearing, fiber-composite structures, we will show how a biomimetic approach enables creating architecture that is both highly effective and efficient, as well as explorative and expressive. Please click Additional Files below to see the full abstract

    Designing architectural materials: from granular form to functional granular material

    Get PDF
    Designed granular materials are a novel class of architectural material system. Following one of the key paradigms of designed matter, material form and material function are closely interrelated in these systems. In this context, the article aims to contribute a parametric particle design model as an interface for this interrelation. A granular material is understood as an aggregation of large numbers of individual particles between which only short-range repulsive contact forces are acting. Granular materials are highly pertinent material systems for architecture. Due to the fact that they can act both as a solid and a liquid, they can be recycled and reconfigured multiple times and are thus highly sustainable. Designed granular materials have the added potential that the function of the granular material can be calibrated through the definition of the particles’ form. Research on the design of granular materials in architecture is nascent. In physics they have been explored mainly with respect to different particle shapes. However, no coherent parametric particle design model of designed particle shapes for granular material systems in architecture has yet been established which considers both fabrication constraints and simulation requirements. The parametric particle design model proposed in this article has been based on a design system which has been developed through feasibility tests and simulations conducted in research and teaching. Based on this design system the parametric particle design model is developed integrating both fabrication constraints for architecture-scale particle systems and the geometric requirements of established simulation methods for granular materials. Initially the design system and related feasibility tests are presented. The parametric particle design model resulting from that is then described in detail. Directions of further research are discussed especially with respect to the integration of the parametric particle design model in ‘inverse’ design methods.Deutsche Forschungsgemeinschafthttps://doi.org/10.13039/501100001659Peer Reviewe

    Robust Task and Motion Planning for Long-Horizon Architectural Construction Planning

    Full text link
    Integrating robotic systems in architectural and construction processes is of core interest to increase the efficiency of the building industry. Automated planning for such systems enables design analysis tools and facilitates faster design iteration cycles for designers and engineers. However, generic task-and-motion planning (TAMP) for long-horizon construction processes is beyond the capabilities of current approaches. In this paper, we develop a multi-agent TAMP framework for long horizon problems such as constructing a full-scale building. To this end we extend the Logic-Geometric Programming framework by sampling-based motion planning,a limited horizon approach, and a task-specific structural stability optimization that allow an effective decomposition of the task. We show that our framework is capable of constructing a large pavilion built from several hundred geometrically unique building elements from start to end autonomously

    Monitoring the production process of lightweight fibrous structures using terrestrial laser scanning

    Get PDF
    The Cluster of Excellence Integrative Computational Design and Construction for Architecture at the University of Stuttgart brings together various disciplines to jointly develop amongst other things a better of processes in the manufacturing and construction domain. One of the cluster’s aims is to create new solutions for the construction of lightweight fibrous structures using coreless winding of lightweight fiber composite systems. For this purpose, a precise geometry and an understanding of the fibers’ behavior during the production process are of major importance. The fibers’ production process is monitored by repeatedly scanning the fibers during different stages of the process using a terrestrial laser scanner. In order to determine the geometry of the fibers’ axes as well as their cross-sections, two different strategies are used. The first strategy focuses on the segmentation of several straight lines between two intersection points. For the comparison of the individual fabrication steps, the positions of the intersection points are contrasted. For the cross-sectional areas of the fibers, orthogonal planes of intersection are then defined and all points within a predefined area are projected onto this plane. Then the area is calculated using a convex hull. In the second strategy, the fibers‘ main axes are represented by best-fitting B-spline curves. The borders of the cross-sections of interest are also approximated by best-fitting B-spline curves, forming the basis for the final determination of the cross-sectional areas. In this case study two epochs are analyzed with a deformation of the size of around 1cm. For both epochs the cross-sections are calculated in cm steps

    Cross-Sectional 4D-Printing: Upscaling Self-Shaping Structures with Differentiated Material Properties Inspired by the Large-Flowered Butterwort (Pinguicula grandiflora)

    Get PDF
    Extrusion-based 4D-printing, which is an emerging field within additive manufacturing, has enabled the technical transfer of bioinspired self-shaping mechanisms by emulating the functional morphology of motile plant structures (e.g., leaves, petals, capsules). However, restricted by the layer-by-layer extrusion process, much of the resulting works are simplified abstractions of the pinecone scale’s bilayer structure. This paper presents a new method of 4D-printing by rotating the printed axis of the bilayers, which enables the design and fabrication of self-shaping monomaterial systems in cross sections. This research introduces a computational workflow for programming, simulating, and 4D-printing differentiated cross sections with multilayered mechanical properties. Taking inspiration from the large-flowered butterwort (Pinguicula grandiflora), which shows the formation of depressions on its trap leaves upon contact with prey, we investigate the depression formation of bioinspired 4D-printed test structures by varying each depth layer. Cross-sectional 4D-printing expands the design space of bioinspired bilayer mechanisms beyond the XY plane, allows more control in tuning their self-shaping properties, and paves the way toward large-scale 4D-printed structures with high-resolution programmability

    digital design and wooden architecture for arte sella land art park

    Get PDF
    Digital design is increasingly sinking the construction sector, shaping and validating architecture according to various criteria and introducing the wood industry to the 4.0 approach. Within the study entitled "Architecture at Arte Sella", parametric design, structural validations and CNC procedures are exploited to help define, control and assess several architectural woodworks, created with famous designers. This contribution describes the design and construction experiences of Atsushi Kitagawara (2017) and Kengo Kuma (2018–2019), the two masterpieces installed in the land art park of Arte Sella (Trento, Italy) and developed, thanks to the Politecnico di Milano team, from design to mock-ups, testing and construction

    Modularisation Strategies for Individualised Precast Construction—Conceptual Fundamentals and Research Directions

    Get PDF
    Modular precast construction is a methodological approach to reduce environmental impacts and increase productivity when building with concrete. Constructions are segmented into similar precast concrete elements, prefabricated with integrated quality control, and assembled just-in-sequence on site. Due to the automatised prefabrication, inaccuracies are minimised and the use of high-performance materials is enabled. As a result, the construction process is accelerated, and the modules can be designed to be lightweight and resource-efficient. This contribution presents the fundamentals of modular constructions made from precast concrete components. Then, to elaborate the requirements of a contemporary modular precast construction, the historic developments are described. Further, concepts and technical processes–comprehensible to non-expert readers–are introduced to formalise the discussion about the current state-of-the-art methods. Three case studies treating ongoing research are introduced and related to the conceptual fundamentals. The research is evaluated with regard to current barriers and future directions. In conclusion, modular precast construction is able to reduce emissions and increase productivity in the sector if researchers and firms coordinate the development of suitable technologies that bring value to critical stakeholders

    Determination of alpha_s using Jet Rates at LEP with the OPAL detector

    Full text link
    Hadronic events produced in e+e- collisions by the LEP collider and recorded by the OPAL detector were used to form distributions based on the number of reconstructed jets. The data were collected between 1995 and 2000 and correspond to energies of 91 GeV, 130-136 GeV and 161-209 GeV. The jet rates were determined using four different jet-finding algorithms (Cone, JADE, Durham and Cambridge). The differential two-jet rate and the average jet rate with the Durham and Cambridge algorithms were used to measure alpha(s) in the LEP energy range by fitting an expression in which order alpah_2s calculations were matched to a NLLA prediction and fitted to the data. Combining the measurements at different centre-of-mass energies, the value of alpha_s (Mz) was determined to be alpha(s)(Mz)=0.1177+-0.0006(stat.)+-0.0012$(expt.)+-0.0010(had.)+-0.0032(theo.) \.Comment: 40 pages, 17 figures, Submitted to Euro. Phys. J.
    • 

    corecore