61 research outputs found

    Improving permafrost physics in the coupled Canadian Land Surface Scheme (v.3.6.2) and Canadian Terrestrial Ecosystem Model (v.2.1) (CLASS-CTEM)

    Get PDF
    The Canadian Land Surface Scheme and Canadian Terrestrial Ecosystem Model (CLASS-CTEM) together form the land surface component of the Canadian Earth System Model (CanESM). Here, we investigate the impact of changes to CLASS-CTEM that are designed to improve the simulation of permafrost physics. Overall, 18 tests were performed, including changing the model configuration (number and depth of ground layers, different soil permeable depth datasets, adding a surface moss layer), and investigating alternative parameterizations of soil hydrology, soil thermal conductivity, and snow properties. To evaluate these changes, CLASS-CTEM outputs were compared to 1570 active layer thickness (ALT) measurements from 97 observation sites that are part of the Global Terrestrial Network fo

    Are Terrestrial Biosphere Models Fit for Simulating the Global Land Carbon Sink?

    Get PDF
    The Global Carbon Project estimates that the terrestrial biosphere has absorbed about one-third of anthropogenic CO2_2 emissions during the 1959–2019 period. This sink-estimate is produced by an ensemble of terrestrial biosphere models and is consistent with the land uptake inferred from the residual of emissions and ocean uptake. The purpose of our study is to understand how well terrestrial biosphere models reproduce the processes that drive the terrestrial carbon sink. One challenge is to decide what level of agreement between model output and observation-based reference data is adequate considering that reference data are prone to uncertainties. To define such a level of agreement, we compute benchmark scores that quantify the similarity between independently derived reference data sets using multiple statistical metrics. Models are considered to perform well if their model scores reach benchmark scores. Our results show that reference data can differ considerably, causing benchmark scores to be low. Model scores are often of similar magnitude as benchmark scores, implying that model performance is reasonable given how different reference data are. While model performance is encouraging, ample potential for improvements remains, including a reduction in a positive leaf area index bias, improved representations of processes that govern soil organic carbon in high latitudes, and an assessment of causes that drive the inter-model spread of gross primary productivity in boreal regions and humid tropics. The success of future model development will increasingly depend on our capacity to reduce and account for observational uncertainties

    Advances in land surface modelling

    Get PDF
    Land surface models have an increasing scope. Initially designed to capture the feedbacks between the land and the atmosphere as part of weather and climate prediction, they are now used as a critical tool in the urgent need to inform policy about land-use and water-use management in a world that is changing physically and economically. This paper outlines the way that models have evolved through this change of purpose and what might the future hold. It highlights the importance of distinguishing between advances in the science within the modelling components, with the advances of how to represent their interaction. This latter aspect of modelling is often overlooked but will increasingly manifest as an issue as the complexity of the system, the time and space scales of the system being modelled increase. These increases are due to technology, data availability and the urgency and range of the problems being studied

    Process-oriented analysis of dominant sources of uncertainty in the land carbon sink

    Get PDF
    The observed global net land carbon sink is captured by current land models. All models agree that atmospheric CO2_{2} and nitrogen deposition driven gains in carbon stocks are partially offset by climate and land-use and land-cover change (LULCC) losses. However, there is a lack of consensus in the partitioning of the sink between vegetation and soil, where models do not even agree on the direction of change in carbon stocks over the past 60 years. This uncertainty is driven by plant productivity, allocation, and turnover response to atmospheric CO2_{2} (and to a smaller extent to LULCC), and the response of soil to LULCC (and to a lesser extent climate). Overall, differences in turnover explain ~70% of model spread in both vegetation and soil carbon changes. Further analysis of internal plant and soil (individual pools) cycling is needed to reduce uncertainty in the controlling processes behind the global land carbon sink

    Global wetland contribution to 2000-2012 atmospheric methane growth rate dynamics

    Get PDF
    Increasing atmospheric methane (CH4) concentrations have contributed to approximately 20% of anthropogenic climate change. Despite the importance of CH4 as a greenhouse gas, its atmospheric growth rate and dynamics over the past two decades, which include a stabilization period (1999–2006), followed by renewed growth starting in 2007, remain poorly understood. We provide an updated estimate of CH4 emissions from wetlands, the largest natural global CH4 source, for 2000–2012 using an ensemble of biogeochemical models constrained with remote sensing surface inundation and inventory-based wetland area data. Between 2000–2012, boreal wetland CH4 emissions increased by 1.2 Tg yr−1 (−0.2–3.5 Tg yr−1), tropical emissions decreased by 0.9 Tg yr−1 (−3.2−1.1 Tg yr−1), yet globally, emissions remained unchanged at 184 ± 22 Tg yr−1. Changing air temperature was responsible for increasing high-latitude emissions whereas declines in low-latitude wetland area decreased tropical emissions; both dynamics are consistent with features of predicted centennial-scale climate change impacts on wetland CH4 emissions. Despite uncertainties in wetland area mapping, our study shows that global wetland CH4 emissions have not contributed significantly to the period of renewed atmospheric CH4 growth, and is consistent with findings from studies that indicate some combination of increasing fossil fuel and agriculture-related CH4 emissions, and a decrease in the atmospheric oxidative sink

    Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales

    Get PDF
    While wetlands are the largest natural source of methane (CH4) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by similar to 17 +/- 11 days, and lagged air and soil temperature by median values of 8 +/- 16 and 5 +/- 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4. At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.Peer reviewe
    corecore