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Abstract
Land surface models have an increasing scope. Initially designed to capture the feedbacks between the land and the atmosphere as
part of weather and climate prediction, they are now used as a critical tool in the urgent need to inform policy about land-use and
water-use management in a world that is changing physically and economically. This paper outlines the way that models have
evolved through this change of purpose and what might the future hold. It highlights the importance of distinguishing between
advances in the science within the modelling components, with the advances of how to represent their interaction. This latter
aspect of modelling is often overlooked but will increasingly manifest as an issue as the complexity of the system, the time and
space scales of the system being modelled increase. These increases are due to technology, data availability and the urgency and
range of the problems being studied.

Keywords Land surface models . Climatemodels .Model frameworks

Introduction

We are approaching an interesting junction with Land Surface
Models (LSMs). Early models such as the Biosphere-
Atmosphere Transfer Scheme (BATS) [37, 38] and the
Simple Biosphere Model (SIB) [122, 123] pioneered the use
of linked soils and vegetation to describe the energy and water

exchanges with the atmosphere. Since then, after decades of
research, much is known about the land as a system and how
to model it [109].

While originally the models were designed to capture the
essential features of land-atmosphere interactions, we have
learnt that provision of our food and energy also depends on
these interactions between climate, soil, water and the
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vegetation. The models we have built to describe these inter-
actions are being urgently re-cast to help us make decisions
about the management of our environment to build resilience
to a changing climate.

But, there is complexity both within the land-system, and
how it interacts with other systems such as the atmosphere and
the human system. To make progress, we need to address the
challenges of heterogeneity, of complexity and of human-in-
teraction. In their ‘Perspectives’ paper, [49] acknowledge the
challenges of heterogeneity and complexity and propose some
practical ways forward using the current LSM framework.

In this paper, we present a review of land surface model-
ling: its history, recent advances and issues that are limiting or
inspiring a way forward, in particular to bring in the human-
interaction dimension. We focus on two important aspects to
modelling:

1. Processes within a component of the land-system.
2. Exchanges between components dealing with scale mis-

match and heterogeneity.

This paper aims to provide a review of how these two
aspects of land surface models have evolved and how an un-
derstanding of their separate role may help us to provide a
robust future for land surface modelling.

In writing this review, we worked with a selection of
modelling groups from around the world to represent the var-
ious approaches to Land Surface Modelling. All of the models
are part of a climate or earth system model, but some have a
greater focus on land-use and carbon, while others focus more
on the global water cycle. It is not possible to capture all the
papers and model developments that have resulted from the
massive scientific effort taking this subject forward. In the
appendix, there is a table that includes the 11 of the main land
surface models in current use in climate modelling. Table 1
highlights the Climate/Earth SystemModels with which these
11 models are associated. The shared model developments of
these 11 models are summarised.

Basic Concepts Used in This Paper

The following schematic (Fig. 1) summarises the ideas pre-
sented in the paper. The processes are arranged in the horizon-
tal from left to right representing the different timescales:

roughly hourly to decadal. This highlights the huge range of
timescales that the land surface models perform in. The ex-
changes are clearly critical in moving across this temporal
range. In the vertical, the processes are working at different
spatial scales and the exchange schemes are designed to deal
with heterogeneity. The schematic is a generalisation of the
current model structures while every model is slightly differ-
ent. Figures 2 and 3 summarise the developments of the com-
ponents (2) and exchanges (3) in three categories: historic (pre
2000), recent and future. A summary of the papers describing
how each model treats these processes and exchanges is given
in the Appendix.

In the next 5 sections, history and development of the pro-
cesses and linkages are explored. They are grouped together
as follows:

Section 2: Canopy Processes with Land-Atmosphere
Exchange
Section 3: Snow and Soil Physics with Surface-
Subsurface Exchange
Section 4: Water Bodies with Land-Catchment and
Water-People Exchanges
Sec t ion 5 : Vege ta t ion Phys io logy and Soi l
Biogeochemistry with Physics-Biogeochemistry
Exchange
Section 6: Vegetation Dynamics and Land-Use with
Vegetation-Landscape Exchange

We will make some conclusions in the final section (7).

Surface and Canopy Processes
with Land-Atmosphere Exchange

This section addresses the physics of the exchange of momen-
tum, water, energy and carbon between the land and the at-
mosphere. The processes include turbulence, evaporation and
radiation transfers while the exchange critically involves tech-
niques to accommodate the different spatial and temporal
scales of the land (small spatial scale, long time scale) and
atmosphere (long spatial scale, short time scale) through ag-
gregation of the land fluxes and disaggregation of the meteo-
rological variables. Figure 4 gives an overview of the process-
es discussed in this section.

Table 1 Eleven land surface models and their associated Climate/Earth System Model

CABLE CLASSIC CLM CoLM G/LM ISBA JSBACH JULES Matsiro Orchidee TESSEL

C/ESM ACCESS CanESM5 CESM
NorESM
CMCC

CAS-ESM
CAMS-CSM
BNU-ESM

ESM2M
ESM2G

CNRM-CM6
CNRM-ESM

MPI-ESM
ICON-ESM

UKESM MIROC
NICAM

IPSL-CM5 EC-Earth
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History

Momentum transfer is a fundamental part of weather forecast-
ing and research goes back to the early 1900s (for a review see
Anderson [2]). The turbulent transfer of momentum was rep-
resented using a bulk transfer equation with a roughness
length that depended on the surface. In the 1970s, it became
common practice to use this approach for the latent and sen-
sible heat transfers, but with a smaller (× 0.1) roughness
length. To simplify the problem, the same roughness length
was used for both water and heat (and now carbon) fluxes.

Inclusion of carbon exchanges in LSMs was introduced in
the 1990s. The sensitivity of photosynthesis to light levels
meant that LSMs needed to represent the filtration of light
through the plant canopy. The first attempts to do this used
Beer’s Law [123] and then an improved ‘two-leaf’ model
which represents a sunlit and shaded canopy ([26, 36]; Y.
[139]).

One of the great challenges for the land-atmosphere ex-
change is the contrast of the spatial and temporal scales in-
volved. The land has a fine spatial structure with variations in

land cover at scales of 100 m, but evolves relatively slowly
(weekly), while due to the mixing of the air, the atmosphere
has dominant spatial scales of 10 km or 1 km for convective
systems, with a temporal scale of hours or even minutes for
convective systems. The exchange of key variables such as
rainfall, radiation, evaporation andmomentum need to accom-
modate these different scales. Many of the assumptions used
to aggregate and disaggregate the variables are implicit and
buried within the model code. It is important that we under-
stand these assumptions and make them explicit so that when
the models change their scale (for instance as we move into
convective permitting models), we can continue to correctly
represent these exchanges. In the following, two examples of
how models accommodate these differences in scale are
described.

Precipitation given by a weather or climate model is the
hourly-average over a large area (up to 100 km2). Over this
time-space, it appears to be drizzling all the time [110]. The
exchange scheme needs to account for this misrepresentation
of the true heterogeneous, spikey nature of precipitation.
Dolman and Gregory [39] used a statistical description of

Fig. 1 Schematic of Land Surface
Model showing Components
(process or module) and the
exchanges between components
across temporal scales (hourly to
decadal)
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rainfall intensity distribution to counteract the drizzle effect in
the JULES model [9] to improve the representation of infiltra-
tion and interception.

Up until the 1990s, each grid box had only one dominant
land-cover type. The first breakthrough for representing the
true heterogeneity of the land-surface came with the use of
tiles, so that each land-cover occupied a fraction of the grid
box with a separate energy balance equation for each. This
approach was pioneered by Koster and Suarez [75] and now
tiling schemes are commonly used, aided by the availability of
high-resolution remote sensing datasets (1 km or finer) (e.g.
[3, 45, 54, 61, 87]).

Recent Advances

Direct light throws hard shadows unlike diffuse light, which,
coming from many angles reaches down further into a tree
canopy. A recent improvement in LSMs is to replace the
Beer’s Law or the ‘two-leaf’ model with a ‘multi-layer’
scheme [12–14]. The impact of this on the carbon balance is
notable [96]. The new ‘multi-layer’models need the direct and
diffuse components of incoming shortwave radiation to be
quantified.

Recently, tiling schemes have been improved by using new
data on ecological trait databases [70, 71] to increase the num-
ber of Plant Functional Types (PFTs) [62, 141]. In addition,
the most advanced LSMs have included soil tiles as well as
vegetation tiles [33, 48, 63, 114, 116].

Current Limitations and Future Directions

While the momentum fluxes are well represented (having the
advantage of a single boundary condition of zero wind speed),
the science behind the transfer of heat and water is more com-
plex. For instance, in a typical landscape, there are several
surfaces with different energy budgets which vary in time
(as leaves wet up and dry out, as the sun comes in and out)
and space (within a canopy, below a canopy, mixtures of
vegetation and soil). All these surfaces contribute to the sur-
face temperatures which acts as the boundary condition to the
atmosphere. A good summary of this issue of heterogeneity is
given by Verhoef et al. [135].

Even within a canopy, there are potential improvements
that can be made to represent different canopy structures and
their impact on the light, temperature, momentum water and
carbon exchanges. One way forward is to model the different

Fig. 2 Land Surface Model Component development for pre 2000, recent advances and future directions
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surfaces explicitly. For instance, Ma and Liu [89] explore
the impact of an explicit representation of the canopy.
There are challenges in that the turbulence throughout
and below the canopy affect the microclimatic profiles
of air temperature, humidity and windspeed [13, 14].
Use of the many flux-tower data that capture sub-
diurnal momentum, energy, water and carbon fluxes
for different sun-angles, difference light-diffusiveness
and different temperatures would enable us to quantify
the role of canopy structure.

In addition to the increase in complexity of the component
model, the exchanges between the land and atmosphere also
need to be improved. The exchange needs to respond to the
time and spatial scale of the atmosphere model. For instance,
when using a convection permitting atmosphere model, the
precipitation becomes more intense (no drizzle effect) and
assumptions about the transfer of scales no longer apply. At
smaller scales, the tiles may become obsolete. In its place, the
heterogeneity of the water stores across the land may become
more important (see Section 4).

Fig. 3 Land Surface Model Exchange developments for pre 2000, recent advances and future directions

Fig. 4 Schematic of surface and
canopy processes represented in
LSMs
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Finally, as Land Surface Models are used a finer scales and
feeding policy direction for human health and wellbeing, the
need for improvements to the representation of Urban land-
surface is becoming more urgent. Urban areas give rise to
phenomena such as ‘urban islands’, and are subject to more
extreme flooding conditions due to the reduced infiltration
capacity. The first Model Intercomparison of Urban models
is just being published and shows how varied they are [57].

Snow and Soil Physics
with Surface-Subsurface Exchange

This section deals with the transfer of energy, heat and water
through snow or soil. Exchanges between the surface and
canopy layer and the soils need to accommodate the hetero-
geneity of soil properties and soil-water across the landscape
and with depth. Figure 5 gives an overview of the processes
discussed in this section.

History

The water from precipitation has several possible fates. It
might flow into the soil matrix where it will be stored before
being lost through evapotranspiration or drainage. If the water
remains on, or near, the soil surface it may evaporate, or if the
ground is sloped or already saturated, it can contribute to
runoff.

Since the early twentieth century, research has been under-
taken to describe the flow of water through unsaturated soil.
Combining the gravitational force and capillary force togeth-
er, the flow of water in the soil can be summarised in one
equation, known as the Darcy-Richards equation [117]. This
equation is widely used in LSMs, although its dependence and
sensitivity to the parameters of the equations mean that its
usefulness is still debated [47]. The parameters for the

equations can be estimated using information about the soil
textures through Pedotransfer Functions (PTFs).

Closely linked to the modelling of soil moisture is the soil
temperature since the specific heat capacity of water is typi-
cally 5 times greater than the dry soil, so that a wet soil is a
bigger heat-sink than dry soil (although still considerably less
than the ocean). In addition, when the soil freezes, the con-
ductivity of the soil massively reduces, eventually to zero.

A critical aspect of the soil water budget is howmuchwater
enters the soil matrix. This not only depends on the saturation
of the soil, but also on soil characteristics such as texture,
geomorphology and the presence of crusts. Most LSMs in-
clude a rainfall-runoff scheme which uses a statistical repre-
sentation of soil-moisture heterogeneity linked to the mean
soil moisture (which is used in the energy and evaporation
exchanges) that were originally used by hydrologists [11,
84, 99, 132].

In the Boreal and Arctic regions, one of the greatest land-
based impact on the atmosphere is through the snow cover.
Due to its high albedo (reflecting 80 to 90% of the sunlight),
snow has a strong cooling influence. Conversely, snow also
acts as a thermal insulating blanket over the soil, protecting it
from cold winter conditions. Model experiments using the
CLM model [81] for the latter half of the twentieth century
showed that variations in the amount of snow accounted for as
much as 50–100% of variations in soil temperature. Many of
the land surface models include a layered snow model to bet-
ter capture the reflectivity at different radiation wavelengths
[9].

In forested areas, the snow holding capacity of trees is
limited so that much of the snow falls beneath the canopy.
This results in a surface that is dark and relatively warm.
Betts [10] showed that the darkening and warming impact of
the presence of trees in a snowy-landscape outweighs the
global-cooling effect of their carbon-absorption.

Recent Advances

As research consistently demonstrated the importance of the
changes in permafrost to the evolving, warming climate, LSM
developers introduced deeper soils into their models and im-
proved the representation of organic soils. Deepening the
models improved the soil thermal and hydrologic dynamics
on longer timescales [80] and allowed better representation of
soil carbon processes. Further model advancements attempt to
account for excess ground ice [6, 82, 144], whose loss through
melt creates rapid surface subsidence, altered hydrologic flow
[40], and enhanced soil carbon respiration [134]. Our limited
knowledge about the current amounts and distribution of ex-
cess ground ice hampers modelling efforts [103, 105].

Exchanges between the soil surface and the underlying
subsurface exhibit high heterogeneity over small spatial
scales. To begin to address the complexity of these exchanges,Fig. 5 Schematic of snow and soil physics representation in LSMs
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LSMs have adopted different strategies. Many models have
added temporary sub-grid water stores such as ponding, al-
thoughmodels that had a focus on cold-regions had it from the
beginning [136].

Current Limitations and Future Directions

Soil modelling is strongly affected by the parameters which
are derived from the observable soil texture using
Pedotransfer Functions (PTFs). Most models use a single set
of PTFs for their global modelling, but it is becoming apparent
that this is not adequate and regional PTFs may be needed. It
may also become important to include the way that soil prop-
erties change with time [138]. Farming practices and changes
to permafrost regions will alter the soil organic matter,
impacting the hydraulic properties of the soil. In addition,
changes to the topography of the land as a result of changes
in the permafrost conditions will need to be accommodated if
we are to correctly model the hydrology and its impacts on the
carbon cycle in the rapidly warming region [134].

Sub-grid heterogeneity is one of the largest limitations we
have at present. For instance, Schultz et al. [121] showed that
heat fluxes between different land cover types (e.g., trees and
grasses) that share the same soil column can strongly impact
the overall water and heat budgets. The use of soil tiles is
probably the best option to deal with this. Already some
models include soil-tiles to explicitly model the peat soils
[77], to represent variations in maximum infiltration [35], soil
textures [95] and irrigation [33].

Water Bodies with Land-Catchment
and Water-Human Exchange

This section relates to the water that is stored or flows across
the landscape, such as rivers, lakes, wetlands, glaciers and
groundwater. The runoff from the land integrates over catch-
ments and then occasionally or seasonally inundates the land.
Meanwhile, there is an exchange between water and the hu-
man system: water can be used for industrial, agricultural and
domestic use (abstractions) but water can be moved to create
supply if needed (transfers). Figure 6 is a schematic of the
processes discussed in this section.

History

In the past, most LSMs included rivers to link the precipitation
runoff to the oceans. The first and widely used routing model
that could be used globally was generated by Oki and Sud
[102]. The routing mechanism was needed to estimate the
timing of the flows to the sea, but no interaction with the
energy or water balance of the landscape through which it
flowed was included.

However, recent studies have shown that the movement of
water across the land through rivers, inundation, irrigation and
groundwater, under both natural and anthropogenic influence,
can have a significant impact on the energy balance of the
land-system. For instance, Martínez-de la Torre and Miguez-
Macho [90] show how the presence of groundwater can affect
the energy balance of the Iberian region and Keune et al. [73]
show that the inclusion of groundwater in a LSM can affect
the atmospheric dynamics.

A review of how and why hydrology needs to be included
in Earth System Models is covered in the review article of
Clark et al. [19].

Recent Advances

New initiatives to link hydrological models to land surface
models are emerging. Fan et al. [43] present a review of the
need to improve the hydrology of LSMs. Some models have
started to include explicit hill-slopes to represent flow across
the landscape (see Appendix), some have large-scale (1000
km) groundwater flows. Inundation and wetlands are being
introduced into LSMs, for instance, Nitta et al. [101] imple-
mented a simple snow-fed wetland scheme in an Earth System
Model, which not only modelled better hydrology, but also
improved the representation of land-atmosphere coupling
strength.

Groundwater is a major water resource worldwide, and
new attempts to include it in LSMs have been made. Fan
et al. [44], de Graaf et al. [28–30], Maxwell and Condon
[91] and Miura and Yoshimura [98] have all implemented
new groundwater models to LSMs that can be used for
assessing global future water resources.

Human intervention in the water cycle affects many aspects
of the land-system. For instance, irrigation can substantially
affect the energy budget of a region and several LSMs have
implemented unlimited irrigation through a simple scheme in
which irrigation is triggered when soil water drops below a
critical threshold [120].With this class of irrigation implemen-
tation, one can research how enhanced evaporation due to
irrigation affects local and regional weather and climate (see
[133]). A more complete picture of human intervention is
provided by models that represent processes including water
withdrawal from surface and groundwater sources, and reser-
voir operation (e.g. [151]). This then allows us to study the
global distribution of food production and world-wide
food/water/energy securities through specification of irriga-
tion water sources [60].

Wetland soil physics and biogeochemical cycles
(Section 5) are linked as saturated conditions slow the decom-
position of organic matter in wetlands, leading to increased
soil carbon, reduced hydraulic conductivity, and a substantial
increase in the emission of methane [74, 94, 147]. Modelling
of the wetland extent is key to the modelling of the methane
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emission estimates, especially as the hydrology of these re-
gions may change in a future climate [22]. Recent years have
seen advances in the level of integration between inundation
and river models with both soil hydrology and biogeochemi-
cal cycles. For example, Guimberteau et al. [58] describe an
improved representation of floodplain dynamics and wetlands
that is fully integrated into the modelled hydrological cycle
and extended to look at riverine C transport. There have also
been developments aimed at representing river-groundwater
interactions, with reinfiltration of river water being required to
reproduce observed soil moisture patterns across a catchment
[153].

Current Limitations and Future Directions

While hydrological models for catchment and even smaller
scales are widely used, it is only relatively recently that at-
tempts have been made to incorporate such detailed process
understanding into land surface models. The need for LSMs to
capture how the flow and storage of water across a landscape
is regulated by fine-scale topographic features is identified by
[43]. Possible new approaches include the use of hydrological
response units, and a representation of the interaction between
groundwater and rivers. Although somemodels now include a
hydrological representation of wetlands and intermittent
flooding, there is still a need to better describe the effects of
these on energy and nutrient cycles. A major challenge for the
development of global-scale groundwater models is the diffi-
culty in sourcing data with which to describe subsurface
characteristics.

Seasonal changes in land ice and glaciers are responsible
for significant changes in the river flows of many high-latitude
and high-altitude basins. Current land surface models include
the effects of snow and land ice on terrestrial albedo and
surface energy balance, but the contribution to river flow from
glacier runoff is missing and the impact on the temperature of
the river-water, which may be important to the ecological
community. If we want to use the land surface models to
address issues of water resources, it is important to include
how these quantities will respond to anthropogenic global
warming [68] as it is likely that the glaciers will disappear
from many areas in the next 50 years.

Many aspects of land use and land management, including
the use of agricultural fertilizers, have important consequences
for water quality and ecology [18], and these will need to be
included in models. From an Earth System perspective, these
riverine nutrient fluxes are important inputs to estuaries and
shelf seas, and the interface between land and marine models
will need to be developed accordingly.

The extent of anthropogenic interventions in the water cy-
cle in many locations now places human water use at the same
order of magnitude as many of the natural fluxes in the water
cycle [25, 56]. It is important that these fluxes are represented
in land-surface models [24] so that future changes in water
availability can be addressed. Although some models already
include detailed descriptions of water management activities
these often rely on the prescription of simple operating rules;
future developments will need to better represent the optimal
management of complex catchments and consider the eco-
nomics of water use.

Fig. 6 Schematic of the
representation of water bodies in
LSMs
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Vegetation Physiology and Soil
Biogeochemistry and Exchanges with Physics

There are two primary purposes of modelling vegetation phys-
iology and soil biogeochemistry in LSMs. First, the physical
structure of vegetation and the process of photosynthesis af-
fect the exchange ofmomentum, energy, water and CO2 at the
land-atmosphere boundary (Section 2). Second, the vegetation
and soil processes affect allocation of the Earth’s carbon to
storage in the land (and oceans) compared to the atmosphere
over seasonal and longer time scales. This section summarises
the how the processes that govern these physical and biogeo-
chemical interactions are modelled. Figure 7 gives an over-
view of the essential processes included in LSMs.

History

The process of leaf photosynthesis is well understood and
most LSMs simulate photosynthesis based on theoretical
models of C3 and C4 photosynthetic pathways [20, 46].
Transfer of CO2 into the plants through photosynthesis is
inevitably linked with loss of water via leaf stomata. This
coupling between photosynthesis and stomatal resistance is
modelled via empirical relationships [7, 14, 20, 69, 83, 93].

All plant components including roots, shoots and leaves
respire CO2 (referred to as the autotrophic respiration)
[128]. The difference of the two large fluxes of photosynthesis
(GPP) and autotrophic respiration is the net carbon gained by
plants (Net Primary Production, NPP) that is allocated be-
tween the different plant components [53]. Dynamic alloca-
tion of carbon to leaves together with leaf loss associated with
cold temperatures, reduced day length, and drought allow
LSMs to simulate leaf phenology as a function of environ-
mental conditions [4, 111]. The leaf phenology responds more

strongly to temperature in temperate and high-latitude regions
[145] and to soil moisture in tropical regions [51]. The sea-
sonal cycle of leaves modulates the land-atmosphere energy,
water and CO2 fluxes [108].

There is a transfer of carbon from the vegetation to the soil
through leaf fall, turnover of shoots and roots, eventual mor-
tality of plants. The soil carbon dynamics is often modelled
using multiple pools with different turnover times [131] and
affected by temperature and moisture.

These dynamical carbon processes were introduced into
the LSMs in the early 2000s as the modelling centres started
to focus on the response of climate to the carbon cycle.

Recent Advances

Understanding the link between photosynthesis and transpira-
tion (Water Use Efficiency) is a priority for LSMs response to
climate. New approaches have been explored recently. For
instance, a new optimisation theory [93] has been included
in some LSMs [31, 78, 104] which recognises that the plants
will be aiming to minimise their water loss while maximising
their carbon uptake. In addition, a model that accounts for how
stomatal conductance respond to root zone soil moisture
through explicitly modelling the cost of the hydraulic lift of
the water has been developed [127, 150], although these have
yet to be fully explored in LSMs (but see [119]).

Another recent advance in LSMs is to model nutrient
(Nitrogen, N and Phosphorus, P) limitations on photo-
synthesis [140, 152]. N cycle modules in LSMs are also
able to model emissions of N2O which is a greenhouse
gas [152]. LSMs are also now including emissions of
the greenhouse gas methane (CH4) associated with nat-
ural wetlands and permafrost thaw [5, 118] (see
Section 4). Anthropogenic methane emissions from

Fig. 7 A schematic of the
biogeochemistry represented in
LSMs
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paddy rice and those from ruminants are represented in
some offline vegetation models (e.g. [76]).

Current Limitations and Future Directions

The temperature response of photosynthesis is a key uncer-
tainty in LSMs, especially the acclimation to slow temperature
changes. Most models use instantaneous temperature re-
sponses, even in response to sustained warming which do
not appropriately account for geographical variations
(adaption) or acclimation to ambient temperature [72].
LSMs that do account for photosynthetic temperature accli-
mation, however, find a large influence on terrestrial carbon
storage with a warmer climate [85, 97, 126].

But, new theories that relate the essential evolutionary na-
ture of biology are emerging which might well bring new
insights into the interplay of vegetation and climate [52].

The modelling of the nitrogen cycle has been shown to be
critical to understand the earth-system response to climate
change. But, there is a strong anthropogenic influence that is
hard to incorporate. The application of fertilizers for agricul-
ture is an area that needs to be addressed (see Section 6).

The typical turnover rate of microbes in soil (0.05 day-1 ;
[59]) implies their half-life is of the order of 15 days. Yet, soil
carbon has one of the longest turnover time scales in the ter-
restrial carbon cycle (~ 30–50 years or up to 1000s of years in
high latitudes) since decomposing organic matter is a slow and
energy intensive process. This has led LSMs to model hetero-
trophic respiration as a function of environmental conditions
(including aerobic and anaerobic conditions), and soil carbon
mass, ignoring the direct role of microbes. New studies sug-
gest the interactions between microbes and heterotrophic res-
piration are complex given the large diversity of microbes and
their function [59, 137] and suggest that temperature sensitiv-
ity of microbial turnover may even promote soil C accumula-
tion with warming, in contrast to reduced soil C as is predicted
by traditional biogeochemical models. Wieder et al. [146]
summarise how LSMs may include microbial-explicit model
formulations. Modelling microbial community explicitly in
LSMs is the first step toward this new functionality.

As soil-tiles are adopted (see Section 3) and canopy pro-
cesses better modelled (see Section 2), then biogeochemistry
can take advantage of more accurate soil moisture, tempera-
tures, and vegetation physiology can take advantage of the
range of canopy temperatures.

Vegetation Dynamics and Land-Use
with Vegetation-Landscape Exchanges

Changes in the vegetation distribution affect the exchange of
the land to the atmosphere through changes in the fluxes of
energy, water and carbon. Vegetation distribution is altered by

both anthropogenic (agriculture, deforestation) and natural dy-
namics (stress, fire, insect outbreaks, or windthrow).

This section describes how the LSMs include these land
cover changes. Figure 8 is an overview of the processes in-
cluded in LSMs.

History

The impacts of land-use change on climate were originally
assessed by imposing large-scale land cover change (e.g.
[66]). This approach was used in CMIP5, where the models
were provided with historical and projected land-use forcing
(e.g. [16]). Natural vegetation dynamics, which were devel-
oped in stand-alone models (‘dynamic global vegetation
models’, DGVMs) [23, 125] were introduced into Earth
System Models (ESMs) in some of the LSMs used in
CMIP5 [17, 21, 142].

Land-use related fluxes of carbon currently contribute
about 14% of annual CO2 emissions [55] or about one quarter
of emissions when other greenhouse gases such as methane
(CH4) and nitrous oxide (N2O) are included (IPCC SRCCL).
This biogeochemical effect is the dominant impact of land-use
on climate. A smaller effect relates to the physical effect such
as the cooling of irrigated areas and the darkness of trees
compared to crops and grass (see Section 2). This is called
the biogeophysical effects [10, 113]. In some places and at a
local scale, local temperature changes due to biogeophysical
changes can be as large as the biogeochemical effect on
warming [32, 129, 148].

The overall observed trend in natural vegetation is a green-
ing trend (with a recent evidence of a browning trend in some
regions). LSMs explain these trends as a response to the phys-
iological effects of rising CO2 concentration and a warming
climate favouring plant growth in cold regions [149].

Recent Advances

Representations of land use and natural vegetation dynamics
have been evolving rapidly. To better capture the full range of
impacts of land use on the earth system, several LSMs have
begun to represent agricultural practices in more detail, in-
cluding specific crop parameterizations for the world’s major
crops along with representations of crop management prac-
tices such as planting, harvesting, irrigation and fertilization
(e.g. [15, 86]). In individual models, impacts from processes
such as till/no-till practices have been examined by altering
parameters for soil respiration (e.g. [115]) or adjusting soil
albedos to account for soil turnover due to tillage [27].
Irrigation has been implemented by adding water to eliminate
plant water stress [34], also see Section 4.

Due to the rapid development of land use models, there is a
wide range of the level of comprehensiveness and the specific
process implementations which confounds multi-model
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assessments of the impacts of historic and projected land-use
change. In recognition of this divergence, the Land UseModel
Intercomparison Project [118](LUMIP) [79] includes a large
factorial set of land-only-perturbations coupled to the atmo-
sphere models. These experiments focused in on a range of
important land use processes so as to enable multi-model as-
sessment of the impacts of specific processes on the land-
atmosphere exchanges.

A key to accurate simulation of the role of vegetation on the
atmosphere is a representation of forest age. This enables the
modelling of harvesting of specifically aged or sized trees
which is needed for a detailed forestry representation (e.g.
[8]). Some models represent sub-grid forest age structures
inherently, while many depict only an average tree or plant
age. These latter, simpler LSMs can represent the distri-
bution explicitly with a tile for each age classes (e.g. [100,
124]). An alternative approach is to model the relationship
between the distribution of the age-class and the average
growth (e.g. [65]). These new generation models rely on
‘cohorts’, wherein plants with similar properties (age,
size, age, functional type) are grouped together ([64, 67,
143]; and see [50] for a review).

Limitation and Future Directions

A recent review of the changes in land-use under anthropo-
genic influences is given in Pongratz et al. [112]. Among
others, they show that there is now an understanding that land
management can be as impactful on climate as land-cover
change [41, 42, 88] but they are un- or under-represented in
present day LSMs.

Current LSMs typically represent crop phenology with rel-
atively few phenological stages, but by doing so miss out on
potential impacts of heat or water stress during key stages of
the crop life cycle [106]. Further, crop modules within LSMs
consider only a few of the many cropmanagement practices in
use today (i.e. mainly irrigation and fertilization). McDermid

et al. [92] gives a review of including agriculture in Earth
System Models.

But, many other crop management practices affect food
production, agricultural land sustainability and the impact of
agriculture on climate. These include cropland harvest, irriga-
tion (discussed in Section 4), and fertilization (Section 5), for-
est harvest, tree species selection, grazing and mowing har-
vest, crop species selection, artificial wetland drainage, pest
management, tillage, fire management and crop residue
management.

Pongratz et al. [112] point out that for each process, there is
often a basic implementation and a comprehensive implemen-
tation. To achieve a comprehensive implementation requires
overcoming challenges of data limitations, and in some cases
inadequate process understanding or inadequate knowledge or
ability to simplify and capture specific human behaviours (e.g.
farmer decisions on when to plant crops). Peng et al. [107]
argue that a much more deliberate and intensive effort to
merge agroeconomic crop models and land-surface models
is required to provide a ‘multiscale crop modelling framework
[that] will enable gene-to-farm design of resilient and sustain-
able crop production systems under a changing climate at
regional-to-global scales’.

Capturing the impacts of agricultural management on soils
is a priority and requires improved representation of plant–
soil–microbial interactions (as discussed in Section 5) and
the impacts of agricultural management on these interactions,
such as the long-term impacts of agricultural management
(including pastureland and rangeland management) on soil
degradation and/or loss [138]. More realistic treatment of
changes in soil health would allow, for example, for study of
the potential impacts of agricultural practices on flood risk.

One of the critical problems is how to specify the role of
humans in the Earth System. A potential way forward is to
link the ESMs with Integrated Assessment Models to ESMs
[1, 130], thus capturing feedbacks between climate, food, wa-
ter and land-use.

Fig. 8 A schematic of land-use
and dynamical vegetation
processes represented in LSMs
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The representation of vegetation dynamics is also
evolving substantially, with first-generation DGVMs be-
ing replaced by demographic models based on a more
realistic ecological understanding of the land system
[50]. Next-generation demographic vegetation models
include processes thought to be critical for ecosystem
function and composition, including canopy gap forma-
tion, vertical light competition, competitive exclusion
and successional recovery from natural or anthropogenic
disturbance. They will also need to be responsive to the
below-ground state such as soil depth, moisture and
temperatures.

Conclusions

Land surface models need to balance two opposing re-
quirements. They need to be complex enough to capture
important processes and drivers of change in the real
world, and parsimonious enough to be able to simulate
and study a multitude of possible other worlds (new
climates, new land and water uses and new locations).

One way to obtain this balance is to articulate the
difference between the representation of processes
within a component and the representation of the ex-
changes between the components. The former is critical
to capture the response of ecosystems to changing cli-
mate conditions and is essentially a scientific problem.
The latter is required to represent the heterogeneity of
the land-system both in time and space and is essential-
ly a modelling problem but requires scientific insight.

This review showed many examples of both these
two aspects, across the 5 main modelling domains: sur-
face and canopy exchanges, soil and snow physics, wa-
ter bodies, biogeochemistry and plant physiology and
vegetation dynamics. We showed how progress in one
aspect may be independent (new models of stomata can
be introduced without reference to other parts of the
model) while others may need changes to the exchanges
between components to make progress (for instance, if
dynamic vegetation models need to link to sub-grid fea-
tures such as soils, topography, wind stress and snow
depth).

Separating out the two aspects (processes and ex-
changes) and making progress in both enables us to
identify our priorities for delivering a model that in-
cludes both the complexity of the real world, while
maintaining an appropriate level of parsimony. For in-
stance, only components that affect the outcome of the
problem being addressed need to be linked in a model
configuration. Another example is that time and space
scale of the application can dictate the appropriate

exchanges used without affecting the representation of
the components.

The future of Land Surface Modelling by the large
modelling centres will probably focus on the framework
for coupling components together, depending on the ap-
plication. As well as the coupling across time and space
scales, the framework will include the external boundary
conditions and evaluation of the outputs for different
applications. This will enable a marketplace for the pro-
vision of the component model which can be provided
by external, academic and international researchers.
Such a relationship between the central operations-
focussed modelling centres and the academic sector will
service one of the un-spoken but critical aspects of
land-surface modelling which is the support it provides
for research and intellectual enquiry.

Ultimately, the goal is that future land surface models
can address key societal and scientific questions related
to ecosystem resilience under a range of environmental
and anthropogenic pressures. By understanding and en-
abling independent development of the basic building
blocks of the models and how they are combined, we
can ensure a healthy future of the integrity of the sci-
ence of Land Surface Modelling.

Appendix A. List of widely used models
and their developments with references.

A ‘Y’ or a paper-reference indicates the process is included in
the model (although not necessarily in the operational or de-
fault version of the model), a ‘N’ indicates it is not included in
the model, and blank spaces indicate no information.

The models are as follows:

CABLE: Community Atmosphere-Biosphere Land
Exchange model (Australia)
CLASSIC: Canadian LAnd Surface Scheme Including
biogeochemical Cycles (Canada)
CLM: Community Land Model (USA)
CoLM: Common Land Model (China)
G/LM: Global Land Model (USA)
ISBA: Interaction Sol-Biosphère-Atmosphère (France)
JSBACH: Jena Scheme for Biosphere-Atmosphere
Coupling in Hamburg (Germany)
JULES: Joint UK Land Environment Simulator (UK)
Matsiro: Minimal Advanced Treatments of Surface
Integration and Runoff (Japan)
Orchidee: Organising Carbon and Hydrology in
Dynamic Ecosystems (France)
TESSEL: Tiled ECMWF Scheme for Surface Exchanges
of Land (Europe).
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Table 2 Land atmosphere exchange

CABLE CLASSIC CLM CoLM G/LM ISBA JSBACH JULES Matsiro Orchidee TESSEL

Tile
representation of vegetation

Ca4 CL9 CM12 CO2
CO5

LM1
LM4
LM6
LM7
LM9
LM10

IS9
IS14

JS2 JU5,
JU8,
JU13

MA1
MA2
MA3
MA4
MA12

Y T3 T11

Separate
energy budget for
components
within a tile

Ca5
Ca8
Ca6
Ca7

CL13 CM18 CO2 LM5 IS3
IS7
IS9
IS12
IS13

JS3 N MA1
MA2
MA3
MA4
MA1

N T3 T11

Vertical layers for radiation in the canopy N N CM1 CO10 Y IS8
IS11

N JU6 N Y T8

Vertical layers for water and heat in the
canopy

N CL14 CM1 N Y IS2
IS5
IS11
IS14

N N N N
OR3

N

Table 3 Soil physics

CABLE CLASSIC CLM CoLM G/LM ISBA JSBACH JULES Matsiro Orchidee TESSEL

Darcy-
Richards

Ca5 CL14 Y N LM1 LM5 IS2
IS5

JS4 JU1 MA1
MA2
MA3
MA4
MA12

Y T12

Rainfall-runoff generation Ca1 CL14 CM23 N LM5 IS4 JS5 JU1 MA1
MA2
MA3
MA4
MA12

T2
T10 T11

Deep soil layers (>4m) Ca5 Ca1 CL12 CM11
CM2
CM19
CM15

N LM1, LM5 IS11
IS14

JS4 JU2 MA1
MA2
MA3
MA4

Y N

Organic soils Y CL8
CL15

CM10 CO4
CO6

LM7 IS11 N N N Y T2

Ponding and/or other Y CL14 CM20 CM8 CO7 LM1 LM5 N N N N T13

Lateral flow in-grid/ hillslopes N N CM21 N LM1 LM7 IS15 N N N N

Layered snow Ca5 N CM7 CO1
CO2

LM5 IS3
IS4
IS11

N JU1 MA1
MA2
MA3
MA4
MA9
MA12

OR5 T1 T7
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Table 4 Water bodies and hydrology

CABLE CLASSIC CLM CoLM G/LM ISBA JSBACH JULES Matsiro Orchidee TESSEL

River routing N CL3 CM13 CO3 LM5 IS6
IS14
IS15

JS6 JU9 MA1
MA2
MA3
MA4 MA10
MA11

Y Y

Wetlands and inundation N CL4 CM20
CM16
CM17

CO3 LM7 IS6
IS14

N JU3 MA1
MA2
MA8
MA10

N Y

Irrigation Ca2 N CM12 CM22 N N Y MA3
MA4
MA6

Y Y

Groundwater Ca1 N CM14 CM19 CO3 LM5 IS10
IS14

N N MA3
MA4
MA5
MA7

N Y

Table 5 Soil biogeochemistry and plant physiology

CABLE CLASSIC CLM CoLM G/LM ISBA JSBACH JULES Matsiro Orchidee TESSEL

Photosynthesis responds to environment Y CL5 Y Y Y IS1
IS16

Y JU3 MA3
MA4

Y Y

Allocation of carbon to roots, stems and
leaves.

Y CL6 Y Y Y IS17
IS16

JS7 JU3 MA3 Y N

Plants acclimatise to temperature and soil
moisture

Y N CM24 Y N N N JU12 N N N

Soil carbon model Ca7 CL5 CM9 N LM8 IS17
IS16

JS1
JS7

JU3 MA3 Y N

Nitrogen cycle linked to carbon cycle Ca7 CL7 CM5 N LM2,
LM3,
LM8

N JS7 JU15 MA3 OR4 N

Table 6 Vegetation dynamics, land and water use

CABLE CLASSIC CLM CoLM G/LM ISBA JSBACH JULES Matsiro Orchidee TESSEL

Different crop types N N CM4
CM3
CM25

N N IS9
IS16

N JU10
JU11

MA3
MA4

Y T5

Land use and land cover change Ca4 CL1 CM26 N Y IS16 JS2 JU7 MA4 OR2 N

Competition between PFTs Y CL10 Y Y Y N JS2 JU8
JU14

N Y N

Water use and transfers of water between
grid

cells

N N N N N N N N MA3 N N
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