856 research outputs found

    Characterization of the Interaction Between the Attachment and Fusion Glycoproteins Required for Paramyxovirus Fusion: a Dissertation

    Get PDF
    The first step of viral infection requires the binding of the viral attachment protein to cell surface receptors. Following binding, viruses penetrate the cellular membrane to deliver their genome into the host cell. For enveloped viruses, which have a lipid bilayer that surrounds their nucleocapsids, entry into the host cell requires the fusion of viral and cellular membranes. This process is mediated by viral glycoproteins located on the surface of the virus. For many enveloped viruses, such as influenza, Ebola, and human immunodeficiency virus, the fusion protein is responsible for mediating both attachment to cellular receptors and membrane fusion. However, paramyxoviruses are unique among fusion promoting viruses because their receptor binding and fusion activities reside on two separate proteins. This unique distribution of functions necessitates a mechanism by which the two proteins can transmit the juxtaposition of the viral and host cell membranes, mediated by the attachment protein (HN/H), into membrane fusion, mediated by the fusion (F) protein. This mechanism allows for paramyxoviruses to gain entry into and spread between cells, and therefore, is an important aspect of virus infection and disease progression. Despite the conservation of receptor binding activity among members of the Paramyxovirinaesubfamily, for most of these viruses, including Newcastle disease virus (NDV), heterologous HN proteins cannot complement F in the promotion of fusion; both the HN and F proteins must originate from the same virus. This is consistent with the existence of a virus-specific interaction between the two glycoproteins. Thus, one or more domains on the HN and F proteins is thought to mediate a specific interaction between them that is an integral part of the fusion process. Therefore, the primary focus of this thesis is the identification of the site(s) on HN that directly contacts F in the HN-F interaction. The ectodomain of the HN protein consists of a stalk and a terminal globular head. Analysis of the fusion activity of chimeric paramyxovirus HN proteins indicates that the stalk region of HN determines its F protein specificity. The first goal of this research was to address the question of whether the stalk not only determines F-specificity, but does so by directly mediating the interaction with F. To establish a correlation between the amount of fusion and the extent of the HN-F interaction, a specific and quantitative co-immunoprecipitation assay was used that detects the HN-F complex at the cell surface. As an initial probe of the role of the HN stalk in mediating the interaction with F, N-glycans were individually added at several positions in the region. N-glycan addition at positions 69 and 77 in the stalk specifically and completely block both fusion and the HN-F interaction without affecting either HN structure or its other activities. However, though they also prevent fusion, N-glycans added at other positions in the stalk also modulate activities that reside in the globular head of HN. This correlates with an alteration of the tetrameric structure of the protein as indicated by sucrose gradient sedimentation analyses. These additional N-glycans likely indirectly affect fusion, perhaps by interfering with changes in the conformation of HN that link receptor binding to the fusion activation of F. To address the issue of whether N-glycan addition at any position in HN would abolish fusion, an N-glycan was added in another region at the base of the globular head of HN (residues 124-152), which was previously predicted by a peptide-based analysis to mediate the interaction with F. HN carrying this additional N-glycan exhibits significant fusion promoting activity, arguing against this site being part of the F-interactive domain in HN. These data support the idea that the F-interactive site on HN is defined by the stalk region of the protein. Site-directed mutagenesis was used to begin to explore the role of individual residues in the stalk in the interaction with F. The characteristics of the F-interactive domain in the stalk of HN are that it is a conserved motif with enough sequence heterogeneity to account for the specificity of the interaction. One such region that meets these requirements is the intervening region (IR) (residues 89-95); a non-helical domain situated between two conserved heptad repeats. Several amino acid substitutions for a completely conserved proline residue in this region impair not only fusion and the HN-F interaction, but also decrease neuraminidase activity in the globular domain and alter the structure of the protein, suggesting that the substitutions indirectly affect the HN-F interaction. Substitutions for L94 also interfere with fusion, but have no significant effect on any other HN function or its structure. Amino acid substitutions at two other positions in the IR (A89 and L90) also modulate only fusion. In all cases, diminished fusion correlates with a decreased ability of the mutated HN protein to interact with F at the cell surface. These findings indicate that the IR is critical to the role of HN in the promotion of fusion and are consistent with its direct involvement in the interaction with the homologous F protein. These are the first point mutations in the HN protein for which a correlation has been demonstrated between the extent of the HN-F interaction and the amount of fusion. This argues strongly that the co-IP assay is an accurate reflection of the HN-F interaction. The second goal of this research was to address the HN-F interaction from the perspective of the F protein by investigating the relationship between receptor binding, the HN-F interaction, and fusion using a highly fusogenic form of the F protein. It has previously been shown that an L289A substitution in NDV F eliminates the requirement for HN in the promotion of fusion and enhances HN-dependent fusion above wild-type (wt) levels. Here, it was shown that the HN-independent fusion exhibited by L289A-F in Cos-7 cells cannot be duplicated in BHK cells. However, when L289A-F is co-expressed with wt HN, enhanced fusion above wt levels is observed in BHK cells. Additionally, when L289A-F is co-expressed with IR-mutated HN proteins previously shown to promote low levels of fusion with wt F, a 2.5-fold increase in fusion was observed. However, similar to wt F, an interaction between L289A-F and the IR-mutated HN proteins was not detected. These results imply that the attachment function of HN, as well as the conformational change in L289A-F, are necessary for the enhanced level of fusion exhibited by HN proteins co-expressed with L289A-F. Indeed, two MAbs detected a conformational difference between L289A-F and the wt F protein. These findings support the idea that the L289A substitution converts F to a form that is less dependent on an interaction with HN for conversion to the fusion-active form. The last goal of this research was to address the cellular site of the HN-F interaction, still a controversial issue based on conflicting data from studies of different paramyxoviruses, using various approaches. This is a particular point of interest, as it speaks to the mechanism by which the HN-F interaction regulates fusion. Thus, NDV HN and F were successfully retained intracellularly with a multiple arginine or KK motif, respectively. The results of Endoglycosidase H resistance and F cleavage studies indicate that the mutated proteins, HN-ER and F-ER, are retained in a compartment prior to the medial-Golgi apparatus and that they are unable to interact with a high enough affinity to co-retain or even cause reduced transport of their wt partner glycoproteins. This is consistent with the HN-F interaction occurring at the cell surface, possibly triggered by receptor binding. In conclusion, this thesis presents evidence to argue that the IR in the stalk of the NDV HN protein directly mediates the interaction with the F protein that is necessary for fusion. Overall, the data presented in this thesis extend the current knowledge of the mechanism by which the paramyxovirus attachment protein can trigger the F protein to initiate membrane fusion. A clear understanding of this process has the potential to identify new anti-viral strategies, such as small molecule inhibitors, aimed at controlling paramyxovirus infection by interfering with early steps in the virus infection cycle

    Objectively measured physical activity and fat mass in a large cohort of children

    Get PDF
    Background Previous studies have been unable to characterise the association between physical activity and obesity, possibly because most relied on inaccurate measures of physical activity and obesity. Methods and Findings We carried out a cross sectional analysis on 5,500 12-year-old children enrolled in the Avon Longitudinal Study of Parents and Children. Total physical activity and minutes of moderate and vigorous physical activity (MVPA) were measured using the Actigraph accelerometer. Fat mass and obesity (defined as the top decile of fat mass) were measured using the Lunar Prodigy dual x-ray emission absorptiometry scanner. We found strong negative associations between MVPA and fat mass that were unaltered after adjustment for total physical activity. We found a strong negative dose-response association between MVPA and obesity. The odds ratio for obesity in adjusted models between top and the bottom quintiles of minutes of MVPA was 0.03 (95% confidence interval [CI] 0.01-0.13, p-value for trend < 0.0001) in boys and 0.36 (95% CI 0.17-0.74, p-value for trend = 0.006) in girls. Conclusions We demonstrated a strong graded inverse association between physical activity and obesity that was stronger in boys. Our data suggest that higher intensity physical activity may be more important than total activity

    Validation of the doubly labeled water method using off-axis integrated cavity output spectroscopy and isotope ratio mass spectrometry

    Get PDF
    This work was supported by an NIH Small Business Innovation (SBIR) research Grant (R44 DK093362), as well as support from the Colorado Nutrition and Obesity Research Center (P30 DK048520) and the Colorado Clinical and Translational Science Institute (UL1 RR025780). Dr. Melanson is also supported by resources from the Geriatric Research, Education, and Clinical Center at the Denver VA Medical Center.Peer reviewedPostprin

    The effect of communications and traffic situation displays on pilots awareness of traffic in the terminal area

    Get PDF
    The Air Traffic Control (ATC) system is evolving under a general plan specified by the Federal Aviation Administration. Among the developments being considered is the Discrete Address Beacon System (DABS). The use of this system, although relieving congestion on the communications frequencies, would eliminate information about other aircraft because the party line communications now in use would be lost. One alternative to restore this lost information is an Airborne Traffic Situation Display (TSD). Experienced airline and military pilots participated in a factorial design to evaluate two types of communication (discrete address, party line) and two types of displays (TSD, no TSD). A stop-action quiz was used to evaluate their knowledge of other aircrafts' position, altitude, speed, heading, rate of climb, identity, and landing sequence number. Significant differences between conditions were detected, primarily in the position variables. Workload, as measured by a spare capacity side-task, showed a main effect of displays and a significant interaction between displays and communications. The data are summarized by plotting each display/communication condition configuration in the plane defined by information and workload index. A limited number of blunders by other aircraft were included in the simulations with a significant, but not entirely satisfactory, improvement in blunder detection attributed to the TSD

    Occupational and leisure time physical activity in contrasting relation to ambulatory blood pressure

    Get PDF
    Background: While moderate and vigorous leisure time physical activities are well documented to decrease the risk for cardiovascular disease, several studies have demonstrated an increased risk for cardiovascular disease in workers with high occupational activity. Research on the underlying causes to the contrasting effects of occupational and leisure time physical activity on cardiovascular health is lacking. The aim of this study was to examine the relation of objective and self-report measures of occupational and leisure time physical activity with 24-h ambulatory systolic blood pressure (BP). Methods: Results for self-reported physical activity are based on observations in 182 workers (60% male, mean age 51 years), while valid objective physical activity data were available in 151 participants. The usual level of physical activity was assessed by 5 items from the Job Content Questionnaire (high physical effort, lifting heavy loads, rapid physical activity, awkward body positions and awkward positions of head or arms at work) and one item asking about the general level of physical activity during non-working time. On a regular working day, participants wore an ambulatory BP monitor and an accelerometer physical activity monitor during 24 h. Associations were examined by means of Analysis of Covariance. Results: Workers with an overall high level of self-reported occupational physical activity as well as those who reported to often lift heavy loads at work had a higher mean systolic BP at work, at home and during sleep. However, no associations were observed between objectively measured occupational physical activity and BP. In contrast, those with objectively measured high proportion of moderate and vigorous leisure time physical activity had a significantly lower mean systolic BP during daytime, while no differences were observed according to self-reported level of leisure time physical activity. Conclusions: These findings suggest that workers reporting static occupational physical activities, unlike general physically demanding tasks characterized by dynamic movements of large muscle groups, are related to a higher daily systolic BP, while high objective levels of moderate and vigorous leisure time physical activity are related to lower daytime systolic BP. Ambulatory systolic BP may be a physiological explanatory factor for the contrasting effects of occupational and leisure time physical activity

    The southern bluefin tuna mucosal microbiome is influenced by husbandry method, net pen location, and anti-parasite treatment

    Get PDF
    Aquaculture is the fastest growing primary industry worldwide. Marine finfish culture in open ocean net pens, or pontoons, is one of the largest growth areas and is currently the only way to rear high value fish such as bluefin tuna. Ranching involves catching wild juveniles, stocking in floating net pens and fattening for 4 to 8 months. Tuna experience several parasite-induced disease challenges in culture that can be mitigated by application of praziquantel (PZQ) as a therapeutic. In this study, we characterized the microbiome of ranched southern Bluefin Tuna, Thunnus maccoyii, across four anatomic sites (gill, skin, digesta, and anterior kidney) and evaluated environmental and pathological factors that influence microbiome composition, including the impact of PZQ treatment on microbiome stability. Southern bluefin tuna gill, skin, and digesta microbiome communities are unique and potentially influenced by husbandry practices, location of pontoon growout pens, and treatment with the antiparasitic PZQ. There was no significant relationship between the fish mucosal microbiome and incidence or abundance of adult blood fluke in the heart or fluke egg density in the gill. An enhanced understanding of microbiome diversity and function in high-value farmed fish species such as bluefin tuna is needed to optimize fish health and improve aquaculture yield. Comparison of the bluefin tuna microbiome to other fish species, including Seriola lalandi (yellowtail kingfish), a common farmed species from Australia, and Scomber japonicus (Pacific mackerel), a wild caught Scombrid relative of tuna, showed the two Scombrids had more similar microbial communities compared to other families. The finding that mucosal microbial communities are more similar in phylogenetically related fish species exposes an opportunity to develop mackerel as a model for tuna microbiome and parasite research

    Shadowing in Inelastic Scattering of Muons on Carbon, Calcium and Lead at Low XBj

    Full text link
    Nuclear shadowing is observed in the per-nucleon cross-sections of positive muons on carbon, calcium and lead as compared to deuterium. The data were taken by Fermilab experiment E665 using inelastically scattered muons of mean incident momentum 470 GeV/c. Cross-section ratios are presented in the kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj decreases, the size of the shadowing effect, as well as its A dependence, are found to approach the corresponding measurements in photoproduction.Comment: 22 pages, incl. 6 figures, to be published in Z. Phys.

    Lambda and Antilambda polarization from deep inelastic muon scattering

    Full text link
    We report results of the first measurements of Lambda and Antilambda polarization produced in deep inelastic polarized muon scattering on the nucleon. The results are consistent with an expected trend towards positive polarization with increasing x_F. The polarizations of Lambda and Antilambda appear to have opposite signs. A large negative polarization for Lambda at low positive x_F is observed and is not explained by existing models.A possible interpretation is presented.Comment: 9 pages, 2 figure

    Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans

    Get PDF
    Sleep has been proposed to be a physiological adaptation to conserve energy, but little research has examined this proposed function of sleep in humans. We quantified effects of sleep, sleep deprivation and recovery sleep on whole-body total daily energy expenditure (EE) and on EE during the habitual day and nighttime. We also determined effects of sleep stage during baseline and recovery sleep on EE. Seven healthy participants aged 22 ± 5 years (mean ± s.d.) maintained ∼8 h per night sleep schedules for 1 week before the study and consumed a weight-maintenance diet for 3 days prior to and during the laboratory protocol. Following a habituation night, subjects lived in a whole-room indirect calorimeter for 3 days. The first 24 h served as baseline – 16 h wakefulness, 8 h scheduled sleep – and this was followed by 40 h sleep deprivation and 8 h scheduled recovery sleep. Findings show that, compared to baseline, 24 h EE was significantly increased by ∼7% during the first 24 h of sleep deprivation and was significantly decreased by ∼5% during recovery, which included hours awake 25–40 and 8 h recovery sleep. During the night time, EE was significantly increased by ∼32% on the sleep deprivation night and significantly decreased by ∼4% during recovery sleep compared to baseline. Small differences in EE were observed among sleep stages, but wakefulness during the sleep episode was associated with increased energy expenditure. These findings provide support for the hypothesis that sleep conserves energy and that sleep deprivation increases total daily EE in humans
    corecore