49 research outputs found

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Atrial fibrillation genetic risk differentiates cardioembolic stroke from other stroke subtypes

    Get PDF
    AbstractObjectiveWe sought to assess whether genetic risk factors for atrial fibrillation can explain cardioembolic stroke risk.MethodsWe evaluated genetic correlations between a prior genetic study of AF and AF in the presence of cardioembolic stroke using genome-wide genotypes from the Stroke Genetics Network (N = 3,190 AF cases, 3,000 cardioembolic stroke cases, and 28,026 referents). We tested whether a previously-validated AF polygenic risk score (PRS) associated with cardioembolic and other stroke subtypes after accounting for AF clinical risk factors.ResultsWe observed strong correlation between previously reported genetic risk for AF, AF in the presence of stroke, and cardioembolic stroke (Pearson’s r=0.77 and 0.76, respectively, across SNPs with p &lt; 4.4 × 10−4 in the prior AF meta-analysis). An AF PRS, adjusted for clinical AF risk factors, was associated with cardioembolic stroke (odds ratio (OR) per standard deviation (sd) = 1.40, p = 1.45×10−48), explaining ∼20% of the heritable component of cardioembolic stroke risk. The AF PRS was also associated with stroke of undetermined cause (OR per sd = 1.07, p = 0.004), but no other primary stroke subtypes (all p &gt; 0.1).ConclusionsGenetic risk for AF is associated with cardioembolic stroke, independent of clinical risk factors. Studies are warranted to determine whether AF genetic risk can serve as a biomarker for strokes caused by AF.</jats:sec

    Anti-predator behaviour of Sahamalaza sportive lemurs, Lepilemur sahamalazensis, at diurnal sleeping sites

    No full text
    In response to predation pressure by raptors, snakes, and carnivores, primates employ anti-predator behaviours such as avoiding areas of high predation risk, cryptic behaviour and camouflage, vigilance and group formation (including mixedspecies associations), and eavesdropping on other species’ alarm calls. After detecting a predator, primates can produce alarm calls, show predator-specific escape strategies or even mob the predator. It remains unclear how solitary nocturnal primates respond to diurnal predation pressure while they sleep or rest. The aim of this study was to investigate the diurnal anti-predator behaviour of the nocturnal and solitary Sahamalaza sportive lemur, Lepilemur sahamalazensis, which regularly rests in exposed locations. We observed the responses of 32 Sahamalaza sportive lemurs to playbacks of territorial calls of an aerial predator (Madagascar harrier hawk), mating calls of a terrestrial predator (fossa), and the contact calls of a medium-sized bird (crested coua) as a control, at different diurnal sleeping sites. Lemurs never showed a flight response after replays of predator or control calls, but regularly froze after harrier hawk calls. Lemurs scanned the sky immediately after playback of harrier hawk calls, and the ground or trees after fossa calls. Lemur vigilance increased significantly after both predator calls. After crested coua calls the animals became significantly less vigilant, suggesting that contact calls of this bird serve as indicators of predator absence. We found no response differences between different types of sleeping sites. Our results show that resting Sahamalaza sportive lemurs recognise predator vocalisations as indicators of increased predation risk, discern vocalizations of different predators, and employ anti-predator behaviours specific for different predator classes. Their behavioural responses while resting or sleeping are comparable to those of active primates, and their response rate of 80% shows that this solitary and nocturnal primate is constantly aware of its environment
    corecore