624 research outputs found

    Joining techniques for fabrication of composite air-cooled turbine blades and vanes

    Get PDF
    Activated diffusion brazing studies of joining methods for composite air-cooled turbine blade and vane fabricatio

    SEASON AND DISTANCE FROM FOREST – OLD FIELD EDGE AFFECT SEED PREDATION BY WHITE-FOOTED MICE

    Get PDF

    Green Jobs Myths

    Get PDF
    A rapidly growing literature promises that a massive program of government mandates, subsidies, and forced technological interventions will reward the nation with an economy brimming with green jobs. Not only will these jobs improve the environment, but they will be high paying, interesting, and provide collective rights. This literature is built on mythologies about economics, forecasting, and technology. In this Article, we survey the green jobs literature, analyze its assumptions, and show how the special interest groups promoting the idea of green jobs have embedded dubious assumptions and techniques within their analyses. Before undertaking efforts to restructure and possibly impoverish our society, careful analysis and informed public debate about these assumptions and prescriptions are necessary

    Cryogenic 9Be+ Penning trap for precision measurements with (anti-)protons

    Get PDF
    Cooling and detection schemes using laser cooling and methods of quantum logic can contribute to high precision CPT symmetry tests in the baryonic sector. This work introduces an experiment to sympathetically cool protons and antiprotons using the Coulomb interaction with a 9Be+ ion trapped in a nearby but separate potential well. We have designed and set up an apparatus to show such coupling between two identical ions for the first time in a Penning trap. In this paper, we present evidence for successful loading and Doppler cooling of clouds and single ions. Our coupling scheme has applications in a range of high-precision measurements in Penning traps and has the potential to substantially improve motional control in these experiments

    Fast adiabatic transport of single laser-cooled 9^9Be+^+ ions in a cryogenic Penning trap stack

    Full text link
    High precision mass and gg-factor measurements in Penning traps have enabled groundbreaking tests of fundamental physics. The most advanced setups use multi-trap methods, which employ transport of particles between specialized trap zones. Present developments focused on the implementation of sympathetic laser cooling will enable significantly shorter duty cycles and better accuracies in many of these scenarios. To take full advantage of these increased capabilities, we implement fast adiabatic transport concepts developed in the context of trapped-ion quantum information processing in a cryogenic Penning trap system. We show adiabatic transport of a single 9Be+^9\mathrm{Be}^+ ion initially cooled to 2 mK over a 2.2 cm distance within 15 ms and with less than 10\,mK energy gain at a peak velocity of 3 m/s. These results represent an important step towards the implementation of quantum logic spectroscopy in the \ppbar system. Applying these developments to other multi-trap systems has the potential to considerably increase the data-sampling rate in these experiments.Comment: 15 pages, 7 figure

    Antarctic pack ice algal distribution: Floe-scale spatial variability and predictability from physical parameters

    Get PDF
    ©2017. Commonwealth of Australia. Antarctic pack ice serves as habitat for microalgae which contribute to Southern Ocean primary production and serve as important food source for pelagic herbivores. Ice algal biomass is highly patchy and remains severely undersampled by classical methods such as spatially restricted ice coring surveys. Here we provide an unprecedented view of ice algal biomass distribution, mapped (as chlorophyll a) in a 100 m by 100 m area of a Weddell Sea pack ice floe, using under-ice irradiance measurements taken with an instrumented remotely operated vehicle. We identified significant correlations (p < 0.001) between algal biomass and concomitant in situ surface measurements of snow depth, ice thickness, and estimated sea ice freeboard levels using a statistical model. The model's explanatory power (r2 = 0.30) indicates that these parameters alone may provide a first basis for spatial prediction of ice algal biomass, but parameterization of additional determinants is needed to inform more robust upscaling efforts

    Research on Layer Manufacturing Techniques at Fraunhofer

    Get PDF
    Within the German Fraunhofer-Gesellschaft, the Fraunhofer Alliance Rapid Prototyping unites the competences of 12 institutes in the field of solid freeform fabrication. Covered competences are virtual and computer-aided product planning methods and techniques, the development and integration of materials and processes for different industrial sectors. This paper presents actual research results on layer manufacturing within the Fraunhofer- Gesellschaft based on examples from Fraunhofer ILT »Laser Melting - Direct manufacturing of metal parts with unique properties«, Fraunhofer IFAM »ecoMold - A novel concept to produce molds for plastic injection molding and pressure die casting« and Fraunhofer IPT »Quick manufacture, repair and modification of steel molds using Controlled Metal Build Up (CMB)«.Mechanical Engineerin

    Iron biogeochemistry in Antarctic pack ice during SIPEX-2

    No full text
    Our study quantified the spatial and temporal distribution of Fe and ancillary biogeochemical parameters at six stations visited during an interdisciplinary Australian Antarctic marine science voyage (SIPEX-2) within the East Antarctic first-year pack ice zone during September–October 2012. Unlike previous studies in the area, the sea ice Chlorophyll a, Particulate Organic Carbon and Nitrogen (POC and PON) maxima did not occur at the ice/water interface because of the snow loading and dynamic processes under which the sea ice formed. Iron in sea ice ranged from 0.9 to 17.4 nM for the dissolved (<0.2 µm) fraction and 0.04 to 990 nM for the particulate (>0.2 µm) fraction. Our results highlight that the concentration of particulate Fe in sea ice was highest when approaching the continent. The high POC concentration and high particulate iron to aluminium ratio in sea ice samples demonstrate that 71% of the particulate Fe was biogenic in composition. Our estimated Fe flux from melting pack ice to East Antarctic surface waters over a 30 day melting period was 0.2 µmol/m2/d of DFe, 2.7 µmol/m2/d of biogenic PFe and 1.3 µmol/m2/d of lithogenic PFe. These estimates suggest that the fertilization potential of the particulate fraction of Fe may have been previously underestimated due to the assumption that it is primarily lithogenic in composition. Our new measurements and calculated fluxes indicate that a large fraction of the total Fe pool within sea ice may be bioavailable and therefore, effective in promoting primary productivity in the marginal ice zone
    corecore