12 research outputs found

    Improving the Performance of Supported Ionic Liquid Phase Catalysts for the Ultra-Low-Temperature Water Gas Shift Reaction Using Organic Salt Additives

    Get PDF
    The water gas shift reaction (WGSR) is catalyzed by supported ionic liquid phase (SILP) systems containing homogeneous Ru complexes dissolved in ionic liquids (ILs). These systems work at very low temperatures, that is, between 120 and 160 °C, as compared to >200 °C in the conventional process. To improve the performance of this ultra-low-temperature catalysis, we investigated the influence of various additives on the catalytic activity of these SILP systems. In particular, the application of methylene blue (MB) as an additive doubled the activity. Infrared spectroscopy measurements combined with density functional theory (DFT) calculations excluded a coordinative interaction of MB with the Ru complex. In contrast, state-of-the-art theoretical calculations elucidated the catalytic effect of the additives by non-covalent interactions. In particular, the additives can significantly lower the barrier of the rate-determining step of the reaction mechanism via formation of hydrogen bonds. The theoretical predictions, thereby, showed excellent agreement with the increase of experimental activity upon variation of the hydrogen bonding moieties in the additives investigated

    Surface Tension and Viscosity of Binary Mixtures of the Fluorinated and Non-fluorinated Ionic Liquids [PFBMIm][PF6] and [C4C1Im][PF6] by the Pendant Drop Method and Surface Light Scattering

    No full text
    Mixtures of fluorinated and non-fluorinated ionic liquids (ILs) show a distinct structural organization in the bulk and at the surface. To understand how such microscopic effects influence the macroscopic bulk and surface properties of IL mixtures, knowledge of corresponding thermophysical properties including viscosity and surface tension is required yet lacking. With the intention of investigating surface enrichment effects of the fluorinated IL [PFBMIm][PF6] (3-methyl-1-(3,3,4,4,4-pentafluorobutyl)imidazolium hexafluorophosphate) in mixtures with the structurally similar, non-fluorinated IL [C4C1Im][PF6] (1-butyl-3-methylimidazolium hexafluorophosphate) observed with angle-resolved X-ray photoelectron spectroscopy (ARXPS), the pendant drop method and surface light scattering (SLS) were applied in the present study to determine surface tension and dynamic viscosity between (293 and 368) K. By adding small amounts of [PFBMIm][PF6] up to 9 mol %, a distinct increase in the viscosity and decrease in the surface tension of the mixtures relative to the properties of pure [C4C1Im][PF6] was found. This behavior reflects the nanosegregated structure in the bulk and at the surface of the binary IL mixtures. Using the results about the pronounced surface enrichment of the fluorinated chain of [PFBMIm][PF6] quantified by ARXPS, a linear mixing rule for the surface tension of the IL mixtures based on the surface tensions of the pure ILs and the surface concentration of their most surface-active groups is suggested
    corecore