16 research outputs found

    Landscape of somatic single nucleotide variants and indels in colorectal cancer and impact on survival

    Get PDF
    Colorectal cancer (CRC) is a biologically heterogeneous disease. To characterize its mutational profile, we conduct targeted sequencing of 205 genes for 2,105 CRC cases with survival data. Our data shows several findings in addition to enhancing the existing knowledge of CRC. We identify PRKCI, SPZ1, MUTYH, MAP2K4, FETUB, and TGFBR2 as additional genes significantly mutated in CRC. We find that among hypermutated tumors, an increased mutation burden is associated with improved CRC-specific survival (HR=0.42, 95% CI: 0.21-0.82). Mutations in TP53 are associated with poorer CRC-specific survival, which is most pronounced in cases carrying TP53 mutations with predicted 0% transcriptional activity (HR=1.53, 95% CI: 1.21-1.94). Furthermore, we observe differences in mutational frequency of several genes and pathways by tumor location, stage, and sex. Overall, this large study provides deep insights into somatic mutations in CRC, and their potential relationships with survival and tumor features. Large scale sequencing study is of paramount importance to unravel the heterogeneity of colorectal cancer. Here, the authors sequenced 205 cancer genes in more than 2000 tumours and identified additional mutated driver genes, determined that mutational burden and specific mutations in TP53 are associated with survival odds

    Interventions outside the workplace for reducing sedentary behaviour in adults under 60 years of age

    Get PDF
    Background Adults spend a majority of their time outside the workplace being sedentary. Large amounts of sedentary behaviour increase the risk of type 2 diabetes, cardiovascular disease, and both all‐cause and cardiovascular disease mortality. Objectives Primary • To assess effects on sedentary time of non‐occupational interventions for reducing sedentary behaviour in adults under 60 years of age Secondary • To describe other health effects and adverse events or unintended consequences of these interventions • To determine whether specific components of interventions are associated with changes in sedentary behaviour • To identify if there are any differential effects of interventions based on health inequalities (e.g. age, sex, income, employment) Search methods We searched CENTRAL, MEDLINE, Embase, Cochrane Database of Systematic Reviews, CINAHL, PsycINFO, SportDiscus, and ClinicalTrials.gov on 14 April 2020. We checked references of included studies, conducted forward citation searching, and contacted authors in the field to identify additional studies. Selection criteria We included randomised controlled trials (RCTs) and cluster RCTs of interventions outside the workplace for community‐dwelling adults aged 18 to 59 years. We included studies only when the intervention had a specific aim or component to change sedentary behaviour. Data collection and analysis Two review authors independently screened titles/abstracts and full‐text articles for study eligibility. Two review authors independently extracted data and assessed risk of bias. We contacted trial authors for additional information or data when required. We examined the following primary outcomes: device‐measured sedentary time, self‐report sitting time, self‐report TV viewing time, and breaks in sedentary time. Main results We included 13 trials involving 1770 participants, all undertaken in high‐income countries. Ten were RCTs and three were cluster RCTs. The mean age of study participants ranged from 20 to 41 years. A majority of participants were female. All interventions were delivered at the individual level. Intervention components included personal monitoring devices, information or education, counselling, and prompts to reduce sedentary behaviour. We judged no study to be at low risk of bias across all domains. Seven studies were at high risk of bias for blinding of outcome assessment due to use of self‐report outcomes measures. Primary outcomes Interventions outside the workplace probably show little or no difference in device‐measured sedentary time in the short term (mean difference (MD) ‐8.36 min/d, 95% confidence interval (CI) ‐27.12 to 10.40; 4 studies; I² = 0%; moderate‐certainty evidence). We are uncertain whether interventions reduce device‐measured sedentary time in the medium term (MD ‐51.37 min/d, 95% CI ‐126.34 to 23.59; 3 studies; I² = 84%; very low‐certainty evidence) We are uncertain whether interventions outside the workplace reduce self‐report sitting time in the short term (MD ‐64.12 min/d, 95% CI ‐260.91 to 132.67; I² = 86%; very low‐certainty evidence). Interventions outside the workplace may show little or no difference in self‐report TV viewing time in the medium term (MD ‐12.45 min/d, 95% CI ‐50.40 to 25.49; 2 studies; I² = 86%; low‐certainty evidence) or in the long term (MD 0.30 min/d, 95% CI ‐0.63 to 1.23; 2 studies; I² = 0%; low‐certainty evidence). It was not possible to pool the five studies that reported breaks in sedentary time given the variation in definitions used. Secondary outcomes Interventions outside the workplace probably have little or no difference on body mass index in the medium term (MD ‐0.25 kg/m², 95% CI ‐0.48 to ‐0.01; 3 studies; I² = 0%; moderate‐certainty evidence). Interventions may have little or no difference in waist circumference in the medium term (MD ‐2.04 cm, 95% CI ‐9.06 to 4.98; 2 studies; I² = 65%; low‐certainty evidence). Interventions probably have little or no difference on glucose in the short term (MD ‐0.18 mmol/L, 95% CI ‐0.30 to ‐0.06; 2 studies; I² = 0%; moderate‐certainty evidence) and medium term (MD ‐0.08 mmol/L, 95% CI ‐0.21 to 0.05; 2 studies, I² = 0%; moderate‐certainty evidence) Interventions outside the workplace may have little or no difference in device‐measured MVPA in the short term (MD 1.99 min/d, 95% CI ‐4.27 to 8.25; 4 studies; I² = 23%; low‐certainty evidence). We are uncertain whether interventions improve device‐measured MVPA in the medium term (MD 6.59 min/d, 95% CI ‐7.35 to 20.53; 3 studies; I² = 70%; very low‐certainty evidence). We are uncertain whether interventions outside the workplace improve self‐reported light‐intensity PA in the short‐term (MD 156.32 min/d, 95% CI 34.34 to 278.31; 2 studies; I² = 79%; very low‐certainty evidence). Interventions may have little or no difference on step count in the short‐term (MD 226.90 steps/day, 95% CI ‐519.78 to 973.59; 3 studies; I² = 0%; low‐certainty evidence) No data on adverse events or symptoms were reported in the included studies. Authors' conclusions Interventions outside the workplace to reduce sedentary behaviour probably lead to little or no difference in device‐measured sedentary time in the short term, and we are uncertain if they reduce device‐measured sedentary time in the medium term. We are uncertain whether interventions outside the workplace reduce self‐reported sitting time in the short term. Interventions outside the workplace may result in little or no difference in self‐report TV viewing time in the medium or long term. The certainty of evidence is moderate to very low, mainly due to concerns about risk of bias, inconsistent findings, and imprecise results. Future studies should be of longer duration; should recruit participants from varying age, socioeconomic, or ethnic groups; and should gather quality of life, cost‐effectiveness, and adverse event data. We strongly recommend that standard methods of data preparation and analysis are adopted to allow comparison of the effects of interventions to reduce sedentary behaviour

    Guideline LDL-C Threshold Achievement in Acute Myocardial Infarction Patients: A Real-World Evidence Study Demonstrating the Impact of Treatment Intensification with PCSK9i

    No full text
    Abstract Introduction A high proportion of Canadian patients with acute myocardial infarction (AMI) do not achieve the threshold low-density lipoprotein cholesterol (LDL-C) levels recommended by the Canadian Cardiovascular Society in 2021. This increases the risk of subsequent atherosclerotic cardiovascular disease (ASCVD) events. Here, we assess LDL-C levels and threshold achievement among patients by lipid-lowering therapies (LLT) received post-AMI. Methods A retrospective cohort study of patients identified with AMI between 2015 and 2019 was conducted using administrative health databases in Alberta, Canada. Patients were grouped by their highest-intensity LLT post-AMI (proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) + another LLT; PCSK9i alone; ezetimibe + statin; statins (high, moderate, low intensity); or ezetimibe alone), and available LDL-C levels were examined in the year before and after LLT dispense date. Results The cohort included 15,283 patients. In patients on PCSK9i + LLT, the median [95% confidence interval (CI)] LDL-C levels decreased from 2.7 (2.3–3.4) before to 0.9 (0.5–1.2) mmol/l after treatment, the largest decrease among treatment groups. In the ezetimibe + statin and high-intensity statin groups, median (95% CI) values after treatment were 1.5 (1.5–1.6) and 1.4 (1.4–1.4) mmol/l, respectively. The proportion of patients below the 1.8 mmol/l threshold increased by 77.7% in the PSCK9i + LLT group after treatment, compared to 45.4 and 32.4% in the ezetimibe + statin and high-intensity statin groups, respectively. Conclusions Intensification with PCSK9i in AMI patients results in a greater proportion of patients achieving below the recommended LDL-C threshold versus statins and or ezetimibe alone. Increased focus on achieving below the LDL-C thresholds with additional LLT as required may benefit patient cardiovascular outcomes

    Effects of prescribed aerobic exercise volume on physical activity and sedentary time in postmenopausal women: a randomized controlled trial

    Get PDF
    Abstract Background Physical activity has emerged as an important lifestyle factor for primary prevention of numerous diseases, including postmenopausal breast cancer. No study to date has assessed the acute and long-term effects of year-long aerobic exercise programs differing in prescribed exercise volume on physical activity and sedentary time in postmenopausal women. Therefore, we aimed to examine the effects of two moderate-vigorous intensity exercise doses on total, light and moderate-vigorous intensity physical activity times, and sedentary time in postmenopausal women during the year-long intervention and one year later. Methods The Breast Cancer and Exercise Trial in Alberta (BETA) was a two-center, two-arm, 12-month randomized controlled trial that included 400 previously inactive postmenopausal women randomized to either 150 (MODERATE) or 300 (HIGH) minutes/week of aerobic exercise. Physical activity and sedentary time were assessed at baseline, 6- (intervention mid-point), 12- (prior to end of intervention) and 24-months (follow-up) with waist-mounted accelerometers (Actigraph GTX3®). Self-reported activity and sedentary time at baseline, 12- and 24-months was also assessed (Past Year Total Physical Activity Questionnaire and SIT-Q). Intention-to-treat analyses were conducted using linear mixed models and adjusted for baseline variables. Results Both physical activity interventions led to increases in objective and subjective measures of total and moderate-vigorous intensity/recreational physical activity time, coupled with decreases in sedentary time, at 6- and 12-months compared to baseline. Additionally, greater increases in accelerometry-derived total physical activity time at 6- and 12-months, and self-reported recreational activity time at 12-months, compared to baseline were noted in the HIGH versus MODERATE groups. Decreases in total, light and moderate-vigorous intensity physical activity time, and an increase in sedentary time, in both groups were noted at 24-months compared to 12-months. A decrease in light intensity physical activity time in both groups at 24-months compared to baseline was also noted. Conclusion These findings have important health implications, suggesting that total physical activity time can be increased with greater volumes of prescribed exercise, but that additional support and resources could be used to promote the maintenance of these high levels of aerobic exercise participation following study completion. Trial registration clinicaltrials.gov identifier: NCT01435005 (BETA Trial). Registred September 15th 2011 (retrospectively registered)

    Effects of physical activity on colorectal cancer risk among family history and body mass index subgroups: a systematic review and meta-analysis

    No full text
    Abstract Background Physical activity is consistently associated with a reduced risk of colorectal cancer in epidemiologic studies. This association among higher risk subgroups, such as those with a first-degree family history of colorectal cancer or high body mass index remains unclear. Methods We searched MEDLINE for studies examining physical activity and colorectal cancer risk among higher risk subgroups through July 11, 2017. Fifteen and three studies were eligible for inclusion for body mass index and first-degree family history of colorectal cancer subgroups, respectively. Estimates of the highest to lowest comparison of physical activity for each subgroup of risk were pooled using random-effects models. Results The pooled associations of physical activity and colorectal cancer risk for those without and with a first-degree family history of colorectal cancer were 0.56 (95% confidence interval (CI) = 0.39–0.80) and 0.72 (95% CI = 0.39–1.32), respectively (pheterogeneity = 0.586). The pooled associations of physical activity and colorectal cancer risk for the low and high body mass index groups were 0.74 (95% CI = 0.66–0.83) and 0.65 (95% CI = 0.53–0.79), respectively (pheterogeneity = 0.389). Conclusions Overall, a stronger relative risk of physical activity on colorectal cancer risk was observed in the higher body mass index group, although the difference was not statistically significant, suggesting an added benefit of physical activity as a cancer prevention strategy in population groups with strong risk factors for colorectal cancer. Additional research among these subgroups is warranted

    Supplemental_Tables_792195 - Treatment History of Youth At-Risk for Serious Mental Illness

    No full text
    <p>Supplemental_Tables_792195 for Treatment History of Youth At-Risk for Serious Mental Illness by Megan S. Farris, Glenda MacQueen, Benjamin I. Goldstein, JianLi Wang, Sidney H. Kennedy, Signe Bray, Catherine Lebel, and Jean Addington in The Canadian Journal of Psychiatry</p

    Depression: An actionable outcome for those at clinical high-risk

    No full text
    Comorbid diagnoses are common in youth who are at clinical high-risk (CHR) for developing psychosis, with depression being the most common. The aim of this paper is to examine depression over two years in a large sample of CHR youth who do not make the transition to psychosis, considering both categorical and dimensional ratings of depression severity. The sample consisted of 267 CHR youth who were followed for two years. Based on DSM-IV diagnoses over this time period, 100 CHR individuals never received a diagnosis of depression, 64 individuals continuously met criteria for depression, 92 individuals received a diagnosis of depression at one or more timepoints, and 11 participants had a diagnosis of depression only at 24-months. These groupings were supported by six-monthly ratings on the Calgary Depression Scale. The majority of this sample experienced a major depressive episode on more than one occasion, suggesting that depression and depressive symptoms identify a domain of substantial unmet clinical need. Recommendations are that depression in CHR youth and young adults should be monitored more frequently and that there is a need for clinical trials to address depression systematically in this vulnerable population
    corecore