11 research outputs found

    Floristic and structural distinctness of monodominant Gilbertiodendron dewevrei forest in the western Congo Basin

    Get PDF
    Background and aims – The forests of the Congo Basin contain high levels of biodiversity, and are globally important for carbon storage. In order to design effective conservation strategies, and to accurately model carbon stocks, a fine-scale understanding of the different forest types that make up this forest block is needed. Monodominant Gilbertiodendron dewevrei forest covers large areas of the Congo Basin, but it is currently unclear whether it is sufficiently distinct from adjacent mixed terre firme forest to warrant separate treatment for conservation planning and carbon calculations. This study aimed to compare the structure and diversity of monodominant and mixed forest, and ask whether there is a unique vascular plant community associated with G. dewevrei forest.Material and methods – We utilised a combination of plot data and herbarium specimens collected in the Sangha Trinational (a network of protect areas in Cameroon, Central African Republic, and the Republic of Congo). Plot inventories were used to compare G. dewevrei forest and mixed forest for stem density, basal area, above ground biomass, stem size distribution, species diversity, and species composition. In addition, a database of 3,557 herbarium specimens was used to identify species of vascular plant that are associated with G. dewevrei forest.Key results – Gilbertiodendron dewevrei forest is distinct in both structure and species composition from mixed forest. Gilbertiodendron dewevrei forest has a lower stem number (of trees ≥ 10 cm), but a greater proportion of larger trees (> 70 cm), suggesting higher carbon stocks. The species composition is distinct from mixed forest, with 56 species of vascular plant significantly associated with G. dewevrei forest

    An estimate of the number of tropical tree species

    Get PDF
    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e. at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa

    Phylogenetic classification of the world's tropical forests

    Get PDF
    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.</p

    Floristic and structural distinctness of monodominant Gilbertiodendron dewevrei forest in the western Congo Basin

    No full text
    Background and aims – The forests of the Congo Basin contain high levels of biodiversity, and are globally important for carbon storage. In order to design effective conservation strategies, and to accurately model carbon stocks, a fine-scale understanding of the different forest types that make up this forest block is needed. Monodominant Gilbertiodendron dewevrei forest covers large areas of the Congo Basin, but it is currently unclear whether it is sufficiently distinct from adjacent mixed terre firme forest to warrant separate treatment for conservation planning and carbon calculations. This study aimed to compare the structure and diversity of monodominant and mixed forest, and ask whether there is a unique vascular plant community associated with G. dewevrei forest. Material and methods – We utilised a combination of plot data and herbarium specimens collected in the Sangha Trinational (a network of protect areas in Cameroon, Central African Republic, and the Republic of Congo). Plot inventories were used to compare G. dewevrei forest and mixed forest for stem density, basal area, above ground biomass, stem size distribution, species diversity, and species composition. In addition, a database of 3,557 herbarium specimens was used to identify species of vascular plant that are associated with G. dewevrei forest. Key results – Gilbertiodendron dewevrei forest is distinct in both structure and species composition from mixed forest. Gilbertiodendron dewevrei forest has a lower stem number (of trees ≥ 10 cm), but a greater proportion of larger trees (> 70 cm), suggesting higher carbon stocks. The species composition is distinct from mixed forest, with 56 species of vascular plant significantly associated with G. dewevrei forest. Conclusion – Monodominant G. dewevrei forest in the Sangha Trinational is both compositionally and structurally distinct from mixed forest. We therefore recommend this forest type be considered separately from mixed forest for conservation planning and carbon stock calculations

    Old growth Afrotropical forests critical for maintaining forest carbon

    Get PDF
    Abstract Aim Large trees [≥ 70 cm diameter at breast height (DBH)] contribute disproportionately to aboveground carbon stock (AGC) across the tropics but may be vulnerable to changing climate and human activities. Here we determine the distribution, drivers and threats to large trees and high carbon forest. Location Central Africa. Time period Current. Major taxa studied Trees. Methods Using Gabon's new National Resource Inventory of 104 field sites, AGC was calculated from 67,466 trees from 578 species and 97 genera. Power and Michaelis?Menten models assessed the contribution of large trees to AGC. Environmental and anthropogenic drivers of AGC, large trees, and stand variables were modelled using Akaike?s information criterion (AIC) weights to calculate average regression coefficients for all p ossible models. Results Mean AGC for trees ≥ 10 cm DBH in Gabonese forestlands was 141.7 Mg C/ha, with averages of 166.6, 171.3 and 96.6 Mg C/ha in old growth, concession and secondary forest. High carbon forests occurred where large trees are most abundant: 31% of AGC was stored in large trees (2.3% of all stems). Human activities largely drove variation in AGC and large trees, but climate and edaphic conditions also determined stand variables (basal area, tree height, wood density, stem density). AGC and large trees increased with distance from human settlements; AGC was 40% lower in secondary than primary and concession forests and 33% higher in protected than non-managed areas. Main conclusions AGC and large trees were negatively associated with human activities, highlighting the importance of forest management. Redefining large trees as ≥ 50 cm DBH (4.3% more stems) would account for 20% more AGC. This study demonstrates that protecting relatively undisturbed forests can be disproportionately effective in conserving carbon and suggests that including sustainable forestry in programs like reduced emissions for deforestation and forest degradation could maintain carbon dense forests in logging concessions that are a large proportion of remaining Central African forests

    A regional allometry for the Congo basin forests based on the largest ever destructive sampling

    Full text link
    The estimation and monitoring of the huge amount of carbon contained in tropical forests, and specifically in the above-ground biomass (AGB) of trees, is needed for the successful implementation of climate change mitigation strategies. Its accuracy depends on the availability of reliable allometric equations to convert forest inventory data into AGB estimates. In this study, we tested whether central African forests are really different from other tropical forests with respect to biomass allometry, and further examined the regional variation in tropical tree allometry across the Congo basin forests. Following the same standardized protocol, trees were destructively sampled for AGB in six sites representative of terra firme forests. We fitted regional and local allometric models, including tree diameter, wood specific gravity, tree height, and crown radius in the AGB predictors. We also evaluated the AGB predictions at the tree level across the six sites of our new models and of existing allometric models, including the pantropical equations developed by Chave et al. (2014, 2005) and the local equations developed by Ngomanda et al. (2014) in Gabon. With a total of 845 tropical trees belonging to 55 African species and covering a large range of diameters (up to 200 cm), the original data presented here can be considered as the largest ever destructive sampling for a tropical region. Regional allometric models were established and including tree height and crown radius had a small but significant effect on AGB predictions. In contrast to our expectations, tree height and crown radius did not explain much between-site variation. Examining the performance of general models (pantropical or regional) versus local models (site-specific), we found little advantage of using local equations. Earlier pantropical equations developed for moist forests were found to provide reasonable predictions of tree AGB in most sites, though the wettest sites, i.e., evergreen forests in Equatorial Guinea and, to a lesser extent in Gabon, tended to show a wet forest allometry. For the Congo basin forests, except in Equatorial Guinea where local models might be preferred, we recommend using our regional models, and otherwise the most recent pantropical models, that were validated here. These results constitute a critical step for the estimation and monitoring of biomass/carbon stocks contained in the second largest contiguous block of tropical forests worldwide, and the successful implementation of climate change mitigation strategies, such as REDD+

    The tropical managed forests observatory: a research network addressing the future of tropical logged forests

    No full text
    While attention on logging in the tropics has been increasing, studies on the long-term effects of silviculture on forest dynamics and ecology remain scare and spatially limited. Indeed, most of our knowledge on tropical forests arises from studies carried out in undisturbed tropical forests. This bias is problematic given that logged and disturbed tropical forests are now covering a larger area than the so-called primary forests. A new network of permanent sample plots in logged forests, the Tropical managed Forests Observatory (TmFO), aims to fill this gap by providing unprecedented opportunities to examine long-term data on the resilience of logged tropical forests at regional and global scales. TmFO currently includes 24 experimental sites distributed across three tropical regions, with a total of 490 permanent plots and 921ha of forest inventories
    corecore