428 research outputs found

    The ‘Blueprint’ framework for career management skills: a critical exploration

    Get PDF
    This article examines the Blueprint framework for career management skills as it has been revealed across sequential implementations in the USA, Canada and Australia. It is argued that despite its lack of an empirical basis, the framework forms a useful and innovative means through which career theory, practice and policy can be connected. The framework comprises both core elements (learning areas, learning model and levels) and contextual elements (resources, community of practice, service delivery approach and policy connection). Each of these elements is explored

    Asymptotically cylindrical 7-manifolds of holonomy G_2 with applications to compact irreducible G_2-manifolds

    Full text link
    We construct examples of exponentially asymptotically cylindrical Riemannian 7-manifolds with holonomy group equal to G_2. To our knowledge, these are the first such examples. We also obtain exponentially asymptotically cylindrical coassociative calibrated submanifolds. Finally, we apply our results to show that one of the compact G_2-manifolds constructed by Joyce by desingularisation of a flat orbifold T^7/\Gamma can be deformed to one of the compact G_2-manifolds obtainable as a generalized connected sum of two exponentially asymptotically cylindrical SU(3)-manifolds via the method given by the first author (math.DG/0012189).Comment: 36 pages; v2: corrected trivial typos; v3: some arguments corrected and improved; v4: a number of improvements on presentation, paritularly in sections 4 and 6, including an added picture

    Colostomy as a bridge to definitive pediatric surgical care: A sub-Saharan African experience

    Get PDF
    Available data, however, points to a wide variety of surgical conditions, with the majority falling into three major diagnostic categories, injuries, congenital anomalies, and surgical infections.1 In Africa, children constitute more than half the population.2 Despite high patient volume, very few dedicated pediatric surgeons are available, with only one pediatric surgeon to approximately two million children in Africa, compared with 1:100,000 in North America.3 Owing to this dearth of pediatric surgical workforce, surgical disease in children is not often managed, and if managed, is predominantly managed by a general surgeon who may lack familiarity with complex pediatric surgical procedures. There is little information in the literature regarding the clinical indications for pediatric patients receiving colostomies, complications associated with colostomies, and colostomy reversal rates in sub-Saharan Africa. [...]the aim of this study is to describe the characteristics and outcomes of patients receiving colostomies in a sub-Saharan African setting. [...]during our study period, there were only four patients who returned for reversal of their colostomy, with two colostomy takedowns and two pull-through procedures, with an average of 261.3 ± 288.1 days till reversal (range 36 to 654 days)

    A proposal for reducing maximum target doses of drugs for psychosis: Reviewing dose–response literature

    Get PDF
    Background: Presently, there is limited guidance on the maximal dosing of psychosis drugs that is based on effectiveness rather than safety or toxicity. Current maximum dosing recommendations may far exceed the necessary degree of dopamine D2 receptor blockade required to treat psychosis. This may lead to excess harm through cognitive impairment and side effects. Aims: This analysis aimed to establish guidance for prescribers by optimally dosing drugs for psychosis based on efficacy and benefit. Methods: We used data from two dose–response meta-analyses and reviewed seven of the most prescribed drugs for psychosis in the UK. Where data were not available, we used appropriate comparison techniques based on D2 receptor occupancy to extrapolate our recommendations. Results: We found that the likely threshold dose for achieving remission of psychotic symptoms was often significantly below the currently licensed dose for these drugs. We therefore recommend that clinicians are cautious about exceeding our recommended doses. Individual factors, however, should be accounted for. We outline potentially relevant factors including age, ethnicity, sex, smoking status and pharmacogenetics. Additionally, we recommend therapeutic drug monitoring as a tool to determine individual pharmacokinetic variation. Conclusions: In summary, we propose a new set of maximum target doses for psychosis drugs based on efficacy. Further research through randomised controlled trials should be undertaken to evaluate the effect of reducing doses from current licensing maximums or from doses that are above our recommendations. However, dose reductions should be implemented in a manner that accounts for and reduces the effects of drug withdrawal

    Charge amplification in sub-atmospheric CF4:He mixtures for directional dark matter searches

    Get PDF
    Low pressure gaseous Time Projection Chambers (TPCs) are a viable technology for directional Dark Matter (DM) searches and have the potential for exploring the parameter space below the neutrino fog [1,2]. Gases like CF4 are advantageous because they contain flourine which is predicted to have heightened elastic scattering rates with a possible Weakly Interacting Massive Particle (WIMP) DM candidate [3,4,5]. The low pressure of CF4 must be maintained, ideally lower than 100 Torr, in order to elongate potential Nuclear Recoil (NR) tracks which allows for improved directional sensitivity and NR/Electron Recoil (ER) discrimination [6]. Recent evidence suggests that He can be added to heavier gases, like CF4, without significantly affecting the length of 12C and 19F recoils due to its lower mass. Such addition of He has the advantage of improving sensitivity to lower mass WIMPs [1]. Simulations can not reliably predict operational stability in these low pressure gas mixtures and thus must be demonstrated experimentally. In this paper we investigate how the addition of He to low pressure CF4 affects the gas gain and energy resolution achieved with a single Thick Gaseous Electron Multiplier (ThGEM)

    Directional dark matter readout with a novel multi-mesh ThGEM for SF6 negative ion operation

    Get PDF
    Direct searches for Weakly Interacting Massive Particle (WIMP) dark matter could greatly benefit from directional measurement of the expected induced nuclear recoils. Gas-based Time Projection Chambers (TPCs) offer potential for this, opening the possibility of measuring WIMP signals below the so-called neutrino floor but also of directional measurement of recoils induced by neutrinos from the Sun, for instance as proposed by the CYGNUS collaboration. Presented here for the first time are results from a Multi-Mesh Thick Gas Electron Multiplier (MM-ThGEM) using negative ion gases for operation with such a directional dark matter TPC. Negative ion drift gases are favoured for directionality due to their low diffusion characteristics. The multiple internal mesh structure is designed to provide a high gain amplification stage when coupled to future large area Micromegas, strip or pixel charge readout planes. Experimental results and simulations are presented of MM-ThGEM gain and functionality using low pressure pure CF4, SF6 and SF6:CF4 mixtures irradiated with alpha particles and 55Fe x-rays. The concept is found to work well, providing stable operation with gains over 103 in pure SF6

    Molecular sieve vacuum swing adsorption purification and radon reduction system for gaseous dark matter and rare-event detectors

    Get PDF
    In the field of directional dark matter experiments SF6 has emerged as an ideal target gas. A critical challenge with this gas, and with other proposed gases, is the effective removal of contaminant gases. This includes radon which produce unwanted background events, but also common pollutants such as water, oxygen and nitrogen, which can capture ionisation electrons, resulting in loss of detector gas gain over time. We present here a novel molecular sieve (MS) based gas recycling system for the simultaneous removal of both radon and common pollutants from SF6. The apparatus has the additional benefit of minimising gas required in experiments and utilises a Vacuum Swing Adsorption (VSA) technique for continuous, long-term operation. The gas system's capabilities were tested with a 100 L low-pressure SF6 Time Projection Chamber (TPC) detector. For the first time, we present a newly developed low-radioactive MS type 5 Å. This material was found to emanate radon at 98% less per radon captured compared to commercial counterparts, the lowest known MS emanation at the time of writing. Consequently, the radon activity in the TPC detector was reduced, with an upper limit of less than 7.2 mBq at a 95% confidence level (C.L.). Incorporation of MS types 3 Å and 4 Å to absorb common pollutants was found successfully to mitigate against gain deterioration while recycling the target gas

    A noninvasive hemoglobin monitor in the pediatric intensive care unit

    Get PDF
    Background Critically ill pediatric patients frequently require hemoglobin monitoring. Accurate noninvasive Hb (SpHb) would allow practitioners to decrease anemia from repeated blood draws, traumatic blood draws, and a decreased number of laboratory Hb (LabHb) medical tests. The Food and Drug Administration has approved the Masimo Pronto SpHb and associated Rainbow probes; however, its use in the pediatric intensive care unit (PICU) is controversial. In this study, we define the degree of agreement between LabHb and SpHb using the Masimo Pronto SpHb Monitor and identify clinical and demographic conditions associated with decreased accuracy. Materials and methods We performed a prospective, observational study in a large PICU at an academic medical center. Fifty-three pediatric patients (30-d and 18-y-old), weighing >3 kg, admitted to the PICU from January-April 2013 were examined. SpHb levels measured at the time of LabHb blood draw were compared and analyzed. Results Only 83 SpHb readings were obtained in 118 attempts (70.3%) and 35 readings provided a result of "unable to obtain." The mean LabHb and SpHb were 11.1 g/dL and 11.2 g/dL, respectively. Bland-Altman analysis showed a mean difference of 0.07 g/dL with a standard deviation of ±2.59 g/dL. Pearson correlation is 0.55, with a 95% confidence interval between 0.38 and 0.68. Logistic regression showed that extreme LabHb values, increasing skin pigmentation, and increasing body mass index were predictors of poor agreement between SpHb and LabHb (P < 0.05). Separately, increasing body mass index, hypoxia, and hypothermia were predictors for undetectable readings (P < 0.05). Conclusions The Masimo Pronto SpHb Monitor provides adequate agreement for the trending of hemoglobin levels in critically ill pediatric patients. However, the degree of agreement is insufficient to be used as the sole indicator for transfusion decisions and should be used in context of other clinical parameters to determine the need for LabHb in critically ill pediatric patients

    Technical summary

    Get PDF
    Human interference with the climate system is occurring. Climate change poses risks for human and natural systems. The assessment of impacts, adaptation, and vulnerability in the Working Group II contribution to the IPCC's Fifth Assessment Report (WGII AR5) evaluates how patterns of risks and potential benefits are shifting due to climate change and how risks can be reduced through mitigation and adaptation. It recognizes that risks of climate change will vary across regions and populations, through space and time, dependent on myriad factors including the extent of mitigation and adaptation

    Scale-dependent perspectives on the geomorphology and evolution of beachdune systems

    Get PDF
    Despite widespread recognition that landforms are complex Earth systems with process-response linkages that span temporal scales from seconds to millennia and spatial scales from sand grains to landscapes, research that integrates knowledge across these scales is fairly uncommon. As a result, understanding of geomorphic systems is often scale-constrained due to a host of methodological, logistical, and theoretical factors that limit the scope of how Earth scientists study landforms and broader landscapes. This paper reviews recent advances in understanding of the geomorphology of beach-dune systems derived from over a decade of collaborative research from Prince Edward Island (PEI), Canada. A comprehensive summary of key findings is provided from short-term experiments embedded within a decade-long monitoring program and a multi-decadal reconstruction of coastal landscape change. Specific attention is paid to the challenges of scale integration and the contextual limitations research at specific spatial and/or temporal scales imposes. A conceptual framework is presented that integrates across key scales of investigation in geomorphology and is grounded in classic ideas in Earth surface sciences on the effectiveness of formative events at different scales. The paper uses this framework to organize the review of this body of research in a 'scale aware' way and, thereby, identifies many new advances in knowledge on the form and function of subaerial beach-dune systems. Finally, the paper offers a synopsis of how greater understanding of the complexities at different scales can be used to inform the development of predictive models, especially those at a temporal scale of decades to centuries, which are most relevant to coastal management issues. Models at this (landform) scale require an understanding of controls that exist at both ‘landscape’ and ‘plot’ scales. Landscape scale controls such as sea level change, regional climate, and the underlying geologic framework essentially provide bounding conditions for independent variables such as winds, waves, water levels, and littoral sediment supply. Similarly, an holistic understanding of the range of processes, feedbacks, and linkages at the finer plot scale is required to inform and verify the assumptions that underly the physical modelling of beach-dune interaction at the landform scale
    corecore