107 research outputs found

    Optimum Refrigerants for Non-Ideal Cycles: An Analysis Employing Corresponding States

    Get PDF

    An Empirical Model For Refrigerant Flammability Based On Molecular Structure and Thermodynamics

    Get PDF
    Screening methods for refrigerant blend flammability using metrics that can be easily calculated are of great interest to the refrigerant industry. Existing flammability metrics such as heat of combustion are not adequate for hydrofluorocarbon blends. Alternative metrics are needed that can be used to assess the flammability of refrigerant blends without requiring time-consuming experimental measurements. In this work we study the combination of the maximum adiabatic flame temperature and the fluorine-substitution ratio as metrics for characterizing the flammability of refrigerant blends. The combination of these metrics yields an estimate of the flammability class of refrigerants (both blends and pure fluids) containing hydrofluorocarbon and hydrocarbon components. The calculations of adiabatic flame temperature are carried out with the open-source chemical kinetics software package Cantera using a mechanism available in the literature

    Evaluation of binary and ternary refrigerant blends as replacements for R134a in an air-conditioning system

    Get PDF
    We investigated refrigerant blends as possible low-GWP (global warming potential) alternatives for R134a in an air-conditioning application. We carried out an extensive screening of the binary and ternary blends possible among a list of 10 pure refrigerants comprising three hydrofluoroolefins (HFOs), six hydrofluorocarbons (HFCs), and carbon dioxide. The screening was based on a simplified cycle model, but with the inclusion of pressure drops in the evaporator and condenser. The metrics for the evaluation were nonflammability, low-GWP, high COP (coefficient of performance), and a volumetric capacity similar to the R134a baseline system. While no mixture was ideal in all regards, we identified 12 best blends that were nonflammable (based on a new estimation method by Linteris, et al., presented in a companion paper at this conference) and with COP and capacity similar to the R134a baseline; the tradeoff, however, was a reduction in GWP of, at most, 56% compared to R134a. An additional seven blends that were estimated to be marginally flammable (ASHRAE Standard 34 classification of A2L) were identified with GWP reductions of as much as 90%. These 19 best blends were then simulated in a more detailed cycle model

    The viscosity of R32 and R125 at saturation

    Get PDF
    This paper reports new measurements of the viscosity of R32 and R125, in both the liquid and the vapor phase, over the temperature range 220 to 343 K near the saturation line. The measurements in both liquid and vapor phases have been carried out with a vibrating-wire viscometer calibrated with respect to standard reference values of viscosity. It is estimated that the uncertainty of the present viscosity data is one of 0.5-1%, being limited partly by the accuracy of the available density data. The experimental data have been represented by polynomial functions of temperature for the purposes of interpolation

    Tropospheric emissions: Monitoring of pollution (TEMPO)

    Get PDF
    TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch between 2018 and 2021. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO observes from Mexico City, Cuba, and the Bahamas to the Canadian oil sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2.1 km N/S×4.4 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry, as well as contributing to carbon cycle knowledge. Measurements are made hourly from geostationary (GEO) orbit, to capture the high variability present in the diurnal cycle of emissions and chemistry that are unobservable from current low-Earth orbit (LEO) satellites that measure once per day. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies. TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve ozone (O), nitrogen dioxide (NO), sulfur dioxide (SO), formaldehyde (HCO), glyoxal (CHO), bromine monoxide (BrO), IO (iodine monoxide), water vapor, aerosols, cloud parameters, ultraviolet radiation, and foliage properties. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O chemistry cycle. Multi-spectral observations provide sensitivity to O in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides these near-real-time air quality products that will be made publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with the European Sentinel-4 (S4) and Korean Geostationary Environment Monitoring Spectrometer (GEMS) instruments.Peer Reviewe

    Observations of Lyα\alpha Emitters at High Redshift

    Full text link
    In this series of lectures, I review our observational understanding of high-zz Lyα\alpha emitters (LAEs) and relevant scientific topics. Since the discovery of LAEs in the late 1990s, more than ten (one) thousand(s) of LAEs have been identified photometrically (spectroscopically) at z0z\sim 0 to z10z\sim 10. These large samples of LAEs are useful to address two major astrophysical issues, galaxy formation and cosmic reionization. Statistical studies have revealed the general picture of LAEs' physical properties: young stellar populations, remarkable luminosity function evolutions, compact morphologies, highly ionized inter-stellar media (ISM) with low metal/dust contents, low masses of dark-matter halos. Typical LAEs represent low-mass high-zz galaxies, high-zz analogs of dwarf galaxies, some of which are thought to be candidates of population III galaxies. These observational studies have also pinpointed rare bright Lyα\alpha sources extended over 10100\sim 10-100 kpc, dubbed Lyα\alpha blobs, whose physical origins are under debate. LAEs are used as probes of cosmic reionization history through the Lyα\alpha damping wing absorption given by the neutral hydrogen of the inter-galactic medium (IGM), which complement the cosmic microwave background radiation and 21cm observations. The low-mass and highly-ionized population of LAEs can be major sources of cosmic reionization. The budget of ionizing photons for cosmic reionization has been constrained, although there remain large observational uncertainties in the parameters. Beyond galaxy formation and cosmic reionization, several new usages of LAEs for science frontiers have been suggested such as the distribution of {\sc Hi} gas in the circum-galactic medium and filaments of large-scale structures. On-going programs and future telescope projects, such as JWST, ELTs, and SKA, will push the horizons of the science frontiers.Comment: Lecture notes for `Lyman-alpha as an Astrophysical and Cosmological Tool', Saas-Fee Advanced Course 46. Verhamme, A., North, P., Cantalupo, S., & Atek, H. (eds.) --- 147 pages, 103 figures. Abstract abridged. Link to the lecture program including the video recording and ppt files : https://obswww.unige.ch/Courses/saas-fee-2016/program.cg

    Thermodynamic Properties of R134a (1,1,1,2-tetrafluoroethane)

    Get PDF
    corecore