241 research outputs found
Recommended from our members
We are the Change that we Seek: Information Interactions During a Change of Viewpoint
There has been considerable hype about filter bubbles and echo chambers influencing the views of information consumers. The fear is that these technologies are undermining democracy by swaying opinion and creating an uninformed, polarised populace. The literature in this space is mostly techno-centric, addressing the impact of technology. In contrast, our work is the first research in the information interaction field to examine changing viewpoints from a human-centric perspective. It provides a new understanding of view change and how we might support informed, autonomous view change behaviour. We interviewed 18 participants about a self-identified change of view, and the information touchpoints they engaged with along the way. In this paper we present the information types and sources that informed changes of viewpoint, and the ways in which our participants interacted with that information. We describe our findings in the context of the techno-centric literature and suggest principles for designing digital information environments that support user autonomy and reflection in viewpoint formation
Solution of coupled vertex and propagator Dyson-Schwinger equations in the scalar Munczek-Nemirovsky model
In a scalar model, we exactly solve the vertex and
propagator Dyson-Schwinger equations under the assumption of a spatially
constant (Munczek-Nemirovsky) propagator for the field. Various
truncation schemes are also considered.Comment: 7 pages,4 figures, minor changes, reference added for published
versio
Ex vivo fucosylation improves human cord blood engraftment in NOD-SCID IL-2Rγ null mice
Delayed engraftment remains a major hurdle after cord blood (CB) transplantation. It may be due, at least in part, to low fucosylation of cell surface molecules important for homing to the bone marrow microenvironment. Because fucosylation of specific cell surface ligands is required before effective interaction with selectins expressed by the bone marrow microvasculature can occur, a simple 30-minute ex vivo incubation of CB hematopoietic progenitor cells with fucosyltransferase-VI and its substrate (GDP-fucose) was performed to increase levels of fucosylation. The physiologic impact of CB hematopoietic progenitor cell hypofucosylation was investigated in vivo in NOD-SCID interleukin (IL)-2Rγ null (NSG) mice. By isolating fucosylated and nonfucosylated CD34 + cells from CB, we showed that only fucosylated CD34 + cells are responsible for engraftment in NSG mice. In addition, because the proportion of CD34 + cells that are fucosylated in CB is significantly less than in bone marrow and peripheral blood, we hypothesize that these combined observations might explain, at least in part, the delayed engraftment observed after CB transplantation. Because engraftment appears to be correlated with the fucosylation of CD34 + cells, we hypothesized that increasing the proportion of CD34 + cells that are fucosylated would improve CB engraftment. Ex vivo treatment with fucosyltransferase-VI significantly increases the levels of CD34 + fucosylation and, as hypothesized, this was associated with improved engraftment. Ex vivo fucosylation did not alter the biodistribution of engrafting cells or pattern of long-term, multilineage, multi-tissue engraftment. We propose that ex vivo fucosylation will similarly improve the rate and magnitude of engraftment for CB transplant recipients in a clinical setting
Anti-CD30 CAR-T Cell Therapy in Relapsed and Refractory Hodgkin Lymphoma
PURPOSE Chimeric antigen receptor (CAR) T-cell therapy of B-cell malignancies has proved to be effective. We show how the same approach of CAR T cells specific for CD30 (CD30.CAR-Ts) can be used to treat Hodgkin lymphoma (HL). METHODS We conducted 2 parallel phase I/II studies (ClinicalTrials.gov identifiers: NCT02690545 and NCT02917083) at 2 independent centers involving patients with relapsed or refractory HL and administered CD30.CAR-Ts after lymphodepletion with either bendamustine alone, bendamustine and fludarabine, or cyclophosphamide and fludarabine. The primary end point was safety. RESULTS Forty-one patients received CD30.CAR-Ts. Treated patients had a median of 7 prior lines of therapy (range, 2-23), including brentuximab vedotin, checkpoint inhibitors, and autologous or allogeneic stem cell transplantation. The most common toxicities were grade 3 or higher hematologic adverse events. Cytokine release syndrome was observed in 10 patients, all of which were grade 1. No neurologic toxicity was observed. The overall response rate in the 32 patients with active disease who received fludarabine-based lymphodepletion was 72%, including 19 patients (59%) with complete response. With a median follow-up of 533 days, the 1-year progression-free survival and overall survival for all evaluable patients were 36% (95% CI, 21% to 51%) and 94% (95% CI, 79% to 99%), respectively. CAR-T cell expansion in vivo was cell dose dependent. CONCLUSION Heavily pretreated patients with relapsed or refractory HL who received fludarabine-based lymphodepletion followed by CD30.CAR-Ts had a high rate of durable responses with an excellent safety profile, highlighting the feasibility of extending CAR-T cell therapies beyond canonical B-cell malignancies
Innovations in coastline management with natural and nature-based features (NNBF): lessons learned from three case studies
Coastal communities around the world are facing increased coastal flooding and shoreline erosion from factors such as sea-level rise and unsustainable development practices. Coastal engineers and managers often rely on gray infrastructure such as seawalls, levees and breakwaters, but are increasingly seeking to incorporate more sustainable natural and nature-based features (NNBF). While coastal restoration projects have been happening for decades, NNBF projects go above and beyond coastal restoration. They seek to provide communities with coastal protection from storms, erosion, and/or flooding while also providing some of the other natural benefits that restored habitats provide. Yet there remain many unknowns about how to design and implement these projects. This study examines three innovative coastal resilience projects that use NNBF approaches to improve coastal community resilience to flooding while providing a host of other benefits: 1) Living Breakwaters in New York Harbor; 2) the Coastal Texas Protection and Restoration Study; and 3) the South Bay Salt Pond Restoration Project in San Francisco Bay. We synthesize findings from these case studies to report areas of progress and illustrate remaining challenges. All three case studies began with innovative project funding and framing that enabled expansion beyond a sole focus on flood risk reduction to include multiple functions and benefits. Each project involved stakeholder engagement and incorporated feedback into the design process. In the Texas case study this dramatically shifted one part of the project design from a more traditional, gray approach to a more natural hybrid solution. We also identified common challenges related to permitting and funding, which often arise as a consequence of uncertainties in performance and long-term sustainability for diverse NNBF approaches. The Living Breakwaters project is helping to address these uncertainties by using detailed computational and physical modeling and a variety of experimental morphologies to help facilitate learning while monitoring future performance. This paper informs and improves future sustainable coastal resilience projects by learning from these past innovations, highlighting the need for integrated and robust monitoring plans for projects after implementation, and emphasizing the critical role of stakeholder engagement.Environmental Biolog
Genetically Determined Height and Risk of Non-hodgkin Lymphoma
Although the evidence is not consistent, epidemiologic studies have suggested that taller adult height may be associated with an increased risk of some non-Hodgkin lymphoma (NHL) subtypes. Height is largely determined by genetic factors, but how these genetic factors may contribute to NHL risk is unknown. We investigated the relationship between genetic determinants of height and NHL risk using data from eight genome-wide association studies (GWAS) comprising 10,629 NHL cases, including 3,857 diffuse large B-cell lymphoma (DLBCL), 2,847 follicular lymphoma (FL), 3,100 chronic lymphocytic leukemia (CLL), and 825 marginal zone lymphoma (MZL) cases, and 9,505 controls of European ancestry. We evaluated genetically predicted height by constructing polygenic risk scores using 833 height-associated SNPs. We used logistic regression to estimate odds ratios (OR) and 95% confidence intervals (CI) for association between genetically determined height and the risk of four NHL subtypes in each GWAS and then used fixed-effect meta-analysis to combine subtype results across studies. We found suggestive evidence between taller genetically determined height and increased CLL risk (OR = 1.08, 95% CI = 1.00\u20131.17, p = 0.049), which was slightly stronger among women (OR = 1.15, 95% CI: 1.01\u20131.31, p = 0.036). No significant associations were observed with DLBCL, FL, or MZL. Our findings suggest that there may be some shared genetic factors between CLL and height, but other endogenous or environmental factors may underlie reported epidemiologic height associations with other subtypes
Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder
This paper is dedicated to the memory of Psychiatric Genomics Consortium (PGC) founding member and Bipolar disorder working group co-chair Pamela Sklar. We thank the participants who donated their time, experiences and DNA to this research, and to the clinical and scientific teams that worked with them. We are deeply indebted to the investigators who comprise the PGC. The views expressed are those of the authors and not necessarily those of any funding or regulatory body. Analyses were carried out on the NL Genetic Cluster Computer (http://www.geneticcluster.org ) hosted by SURFsara, and the Mount Sinai high performance computing cluster (http://hpc.mssm.edu).Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P<1x10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (GWS, p < 5x10-8) in the discovery GWAS were not GWS in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis 30 loci were GWS including 20 novel loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene-sets including regulation of insulin secretion and endocannabinoid signaling. BDI is strongly genetically correlated with schizophrenia, driven by psychosis, whereas BDII is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential new biological mechanisms for BD.This work was funded in part by the Brain and Behavior Research Foundation, Stanley Medical Research Institute, University of Michigan, Pritzker Neuropsychiatric Disorders Research Fund L.L.C., Marriot Foundation and the Mayo Clinic Center for Individualized Medicine, the NIMH Intramural Research Program; Canadian Institutes of Health Research; the UK Maudsley NHS Foundation Trust, NIHR, NRS, MRC, Wellcome Trust; European Research Council; German Ministry for Education and Research, German Research Foundation IZKF of Münster, Deutsche Forschungsgemeinschaft, ImmunoSensation, the Dr. Lisa-Oehler Foundation, University of Bonn; the Swiss National Science Foundation; French Foundation FondaMental and ANR; Spanish Ministerio de EconomÃa, CIBERSAM, Industria y Competitividad, European Regional Development Fund (ERDF), Generalitat de Catalunya, EU Horizon 2020 Research and Innovation Programme; BBMRI-NL; South-East Norway Regional Health Authority and Mrs. Throne-Holst; Swedish Research Council, Stockholm County Council, Söderström Foundation; Lundbeck Foundation, Aarhus University; Australia NHMRC, NSW Ministry of Health, Janette M O'Neil and Betty C Lynch
A risk prediction model for head and neck cancers incorporating lifestyle factors, HPV serology and genetic markers
Head and neck cancer is often diagnosed late and prognosis for most head and neck cancer patients remains poor. To aid early detection, we developed a risk prediction model based on demographic and lifestyle risk factors, human papillomavirus (HPV) serological markers and genetic markers. A total of 10 126 head and neck cancer cases and 5254 controls from five North American and European studies were included. HPV serostatus was determined by antibodies for HPV16 early oncoproteins (E6, E7) and regulatory early proteins (E1, E2, E4). The data were split into a training set (70%) for model development and a hold-out testing set (30%) for model performance evaluation, including discriminative ability and calibration. The risk models including demographic, lifestyle risk factors and polygenic risk score showed a reasonable predictive accuracy for head and neck cancer overall. A risk model that also included HPV serology showed substantially improved predictive accuracy for oropharyngeal cancer (AUC = 0.94, 95% CI = 0.92-0.95 in men and AUC = 0.92, 95% CI = 0.88-0.95 in women). The 5-year absolute risk estimates showed distinct trajectories by risk factor profiles. Based on the UK Biobank cohort, the risks of developing oropharyngeal cancer among 60 years old and HPV16 seropositive in the next 5 years ranged from 5.8% to 14.9% with an average of 8.1% for men, 1.3% to 4.4% with an average of 2.2% for women. Absolute risk was generally higher among individuals with heavy smoking, heavy drinking, HPV seropositivity and those with higher polygenic risk score. These risk models may be helpful for identifying people at high risk of developing head and neck cancer
Improving Genetic Prediction by Leveraging Genetic Correlations Among Human Diseases and Traits
Genomic prediction has the potential to contribute to precision medicine. However, to date, the utility of such predictors is limited due to low accuracy for most traits. Here theory and simulation study are used to demonstrate that widespread pleiotropy among phenotypes can be utilised to improve genomic risk prediction. We show how a genetic predictor can be created as a weighted index that combines published genome-wide association study (GWAS) summary statistics across many different traits. We apply this framework to predict risk of schizophrenia and bipolar disorder in the Psychiatric Genomics consortium data, finding substantial heterogeneity in prediction accuracy increases across cohorts. For six additional phenotypes in the UK Biobank data, we find increases in prediction accuracy ranging from 0.7 for height to 47 for type 2 diabetes, when using a multi-trait predictor that combines published summary statistics from multiple traits, as compared to a predictor based only on one trait. © 2018 The Author(s)
- …