66 research outputs found

    Phase Diagram of the 1D Kondo Lattice Model

    Full text link
    We determine the boundary of the fully polarized ferromagnetic ground state in the one dimensional Kondo lattice model at partial conduction electron band filling by using a newly developed infinite size DMRG method which conserves the total spin quantum number. The obtained paramagnetic to ferromagnetic phase boundary is below J3.5J \approx 3.5 for the whole range of band filling. By this we solve the controversy in the phase diagram over the extent of the ferromagnetic region close to half filling.Comment: 6 pages, 4 EPS figures. Presented at MOS9

    Interactions of Catalytic Enzymes with n-Type Polymers for High-Performance Metabolite Sensors

    Get PDF
    The tight regulation of the glucose concentration in the body is crucial for balanced physiological function. We developed an electrochemical transistor comprising an n-type conjugated polymer film in contact with a catalytic enzyme for sensitive and selective glucose detection in bodily fluids. Despite the promise of these sensors, the property of the polymer that led to such high performance has remained unknown, with charge transport being the only characteristic under focus. Here, we studied the impact of the polymer chemical structure on film surface properties and enzyme adsorption behavior using a combination of physiochemical characterization methods and correlated our findings with the resulting sensor performance. We developed five n-type polymers bearing the same backbone with side chains differing in polarity and charge. We found that the nature of the side chains modulated the film surface properties, dictating the extent of interactions between the enzyme and the polymer film. Quartz crystal microbalance with dissipation monitoring studies showed that hydrophobic surfaces retained more enzymes in a densely packed arrangement, while hydrophilic surfaces captured fewer enzymes in a flattened conformation. X-ray photoelectron spectroscopy analysis of the surfaces revealed strong interactions of the enzyme with the glycolated side chains of the polymers, which improved for linear side chains compared to those for branched ones. We probed the alterations in the enzyme structure upon adsorption using circular dichroism, which suggested protein denaturation on hydrophobic surfaces. Our study concludes that a negatively charged, smooth, and hydrophilic film surface provides the best environment for enzyme adsorption with desired mass and conformation, maximizing the sensor performance. This knowledge will guide synthetic work aiming to establish close interactions between proteins and electronic materials, which is crucial for developing high-performance enzymatic metabolite biosensors and biocatalytic charge-conversion devices

    Assessing framing of uncertainties in water management practice

    Get PDF
    Dealing with uncertainties in water management is an important issue and is one which will only increase in light of global changes, particularly climate change. So far, uncertainties in water management have mostly been assessed from a scientific point of view, and in quantitative terms. In this paper, we focus on the perspectives from water management practice, adopting a qualitative approach. We consider it important to know how uncertainties are framed in water management practice in order to develop practice relevant strategies for dealing with uncertainties. Framing refers to how people make sense of the world. With the aim of identifying what are important parameters for the framing of uncertainties in water management practice, in this paper we analyze uncertainty situations described by decision-makers in water management. The analysis builds on a series of ¿Uncertainty Dialogues¿ carried out within the NeWater project with water managers in the Rhine, Elbe and Guadiana basins in 2006. During these dialogues, representatives of these river basins were asked what uncertainties they encountered in their professional work life and how they confronted them. Analysing these dialogues we identified several important parameters of how uncertainties get framed. Our assumption is that making framing of uncertainty explicit for water managers will allow for better dealing with the respective uncertainty situations. Keywords Framing - Uncertainty - Water management practic

    The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes.

    Get PDF
    We report a design strategy that allows the preparation of solution processable n-type materials from low boiling point solvents for organic electrochemical transistors (OECTs). The polymer backbone is based on NDI-T2 copolymers where a branched alkyl side chain is gradually exchanged for a linear ethylene glycol-based side chain. A series of random copolymers was prepared with glycol side chain percentages of 0, 10, 25, 50, 75, 90, and 100 with respect to the alkyl side chains. These were characterized to study the influence of the polar side chains on interaction with aqueous electrolytes, their electrochemical redox reactions, and performance in OECTs when operated in aqueous electrolytes. We observed that glycol side chain percentages of >50% are required to achieve volumetric charging, while lower glycol chain percentages show a mixed operation with high required voltages to allow for bulk charging of the organic semiconductor. A strong dependence of the electron mobility on the fraction of glycol chains was found for copolymers based on NDI-T2, with a significant drop as alkyl side chains are replaced by glycol side chains

    Deglacial sea surface temperatures of the western tropical Pacific : a new look at old coral

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 19 (2004): PA4031, doi:10.1029/2004PA001084.Using Secondary Ion Mass Spectrometry (SIMS) ion microprobe techniques, we generated annual Sr/Ca cycles with subweekly resolution from chunks of Porites coral retrieved from a Tahiti barrier reef drill core (149°W, 17°S), representing the period 13,650 to 13,100 years B.P. The centers of pristine skeletal septa were selectively targeted with a 10 μm diameter ion beam spot, avoiding adjacent pore spaces occupied by secondary aragonite needles. Applying a Sr/Ca–sea surface temperature (SST) calibration equation derived from modern Tahiti Porites having the same low growth rate as the fossil specimens, we obtained SSTs ∼0.5°–1.5°C cooler during the Bølling-Allerod relative to the present day, with no significant change in seasonality. On the contrary, we estimate that analysis of bulk samples would yield excessively cool Sr/Ca-based SST estimates due to the occupation by secondary aragonite crystals of up to 50% of the skeletal pore space in the ancient samples. We find that growth rate effects on coral Sr/Ca further depress the apparent mean annual derived SSTs (by >3°C) and amplify the apparent seasonality by selectively enhancing wintertime cooling. Our microscale analysis of pristine skeleton and application of an appropriate growth-dependent calibration yield Sr/Ca-derived SSTs that are in good agreement with those derived from Mg/Ca ratios of calcitic foraminifera which indicate a continuous postglacial warming of the western tropical Pacific, in phase with the warming of the tropical Atlantic.Funds for this study were provided by NSF MG&G award number OCE-0241075

    The one dimensional Kondo lattice model at partial band filling

    Full text link
    The Kondo lattice model introduced in 1977 describes a lattice of localized magnetic moments interacting with a sea of conduction electrons. It is one of the most important canonical models in the study of a class of rare earth compounds, called heavy fermion systems, and as such has been studied intensively by a wide variety of techniques for more than a quarter of a century. This review focuses on the one dimensional case at partial band filling, in which the number of conduction electrons is less than the number of localized moments. The theoretical understanding, based on the bosonized solution, of the conventional Kondo lattice model is presented in great detail. This review divides naturally into two parts, the first relating to the description of the formalism, and the second to its application. After an all-inclusive description of the bosonization technique, the bosonized form of the Kondo lattice hamiltonian is constructed in detail. Next the double-exchange ordering, Kondo singlet formation, the RKKY interaction and spin polaron formation are described comprehensively. An in-depth analysis of the phase diagram follows, with special emphasis on the destruction of the ferromagnetic phase by spin-flip disorder scattering, and of recent numerical results. The results are shown to hold for both antiferromagnetic and ferromagnetic Kondo lattice. The general exposition is pedagogic in tone.Comment: Review, 258 pages, 19 figure

    An Evolutionary Framework for Association Testing in Resequencing Studies

    Get PDF
    Sequencing technologies are becoming cheap enough to apply to large numbers of study participants and promise to provide new insights into human phenotypes by bringing to light rare and previously unknown genetic variants. We develop a new framework for the analysis of sequence data that incorporates all of the major features of previously proposed approaches, including those focused on allele counts and allele burden, but is both more general and more powerful. We harness population genetic theory to provide prior information on effect sizes and to create a pooling strategy for information from rare variants. Our method, EMMPAT (Evolutionary Mixed Model for Pooled Association Testing), generates a single test per gene (substantially reducing multiple testing concerns), facilitates graphical summaries, and improves the interpretation of results by allowing calculation of attributable variance. Simulations show that, relative to previously used approaches, our method increases the power to detect genes that affect phenotype when natural selection has kept alleles with large effect sizes rare. We demonstrate our approach on a population-based re-sequencing study of association between serum triglycerides and variation in ANGPTL4

    Out of Their Depth? Isolated Deep Populations of the Cosmopolitan Coral Desmophyllum dianthus May Be Highly Vulnerable to Environmental Change

    Get PDF
    Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons) rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS), the mitochondrial ribosomal subunit (16S) and mitochondrial control region (MtC) to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow <600 m, mid 1000–1500 m, deep >1500 m) even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations

    Physiological response of the cold-water coral Desmophyllum dianthus to thermal stress and ocean acidification

    Get PDF
    Rising temperatures and ocean acidification driven by anthropogenic carbon emissions threaten both tropical and temperate corals. However, the synergistic effect of these stressors on coral physiology is still poorly understood, in particular for cold-water corals. This study assessed changes in key physiological parameters (calcification, respiration and ammonium excretion) of the widespread cold-water coral Desmophyllum dianthus maintained for ∼8 months at two temperatures (ambient 12 ◦C and elevated 15 ◦C) and two pCO2 conditions (ambient 390 ppm and elevated 750 ppm). At ambient temperatures no change in instantaneous calcification, respiration or ammonium excretion rates was observed at either pCO2 levels. Conversely, elevated temperature (15 ◦C) significantly reduced calcification rates, and combined elevated temperature and pCO2 significantly reduced respiration rates. Changes in the ratio of respired oxygen to excreted nitrogen (O:N), which provides information on the main sources of energy being metabolized, indicated a shift from mixed use of protein and carbohydrate/lipid as metabolic substrates under control conditions, to less efficient protein-dominated catabolism under both stressors. Overall, this study shows that the physiology of D. dianthus is more sensitive to thermal than pCO2 stress, and that the predicted combination of rising temperatures and ocean acidification in the coming decades may severely impact this cold-water coral species
    corecore