421 research outputs found

    Atmospheric CO2 over the last 1000 years: A high-resolution record from the West Antarctic Ice Sheet (WAIS) Divide ice core

    Get PDF
    We report a decadally resolved record of atmospheric CO2 concentration for the last 1000 years, obtained from the West Antarctic Ice Sheet (WAIS) Divide shallow ice core. The most prominent feature of the pre‐industrial period is a rapid ∌7 ppm decrease of CO2 in a span of ∌20–50 years at ∌1600 A.D. This observation confirms the timing of an abrupt atmospheric CO2 decrease of ∌10 ppm observed for that time period in the Law Dome ice core CO2 records, but the true magnitude of the decrease remains unclear. Atmospheric CO2 variations over the time period 1000–1800 A.D. are statistically correlated with northern hemispheric climate and tropical Indo‐Pacific sea surface temperature. However, the exact relationship between CO2 and climate remains elusive due to regional climate variations and/or uneven geographical data density of paleoclimate records. We observe small differences of 0 ∌ 2% (0 ∌ 6 ppm) among the high‐precision CO2 records from the Law Dome, EPICA Dronning Maud Land and WAIS Divide Antarctic ice cores. However, those records share common trends of CO2 change on centennial to multicentennial time scales, and clearly show that atmospheric CO2 has been increasing above preindustrial levels since ∌1850 A.D

    Inspiratory muscle training reduces blood lactate concentration during volitional hyperpnoea

    Get PDF
    Although reduced blood lactate concentrations ([lac−]B) have been observed during whole-body exercise following inspiratory muscle training (IMT), it remains unknown whether the inspiratory muscles are the source of at least part of this reduction. To investigate this, we tested the hypothesis that IMT would attenuate the increase in [lac−]B caused by mimicking, at rest, the breathing pattern observed during high-intensity exercise. Twenty-two physically active males were matched for 85% maximal exercise minute ventilation (V˙Emax) and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate with 85% V˙Emax

    Atmospheric methane variability: Centennial-scale signals in the Last Glacial Period

    Get PDF
    In order to understand atmospheric methane (CH4_{4}) biogeochemistry now and in the future, we must apprehend its natural variability, without anthropogenic influence. Samples of ancient air trapped within ice cores provide the means to do this. Here we analyze the ultrahigh-resolution CH4_{4} record of the West Antarctic Ice Sheet Divide ice core 67.2–9.8 ka and find novel, atmospheric CH4_{4} variability at centennial time scales throughout the record. This signal is characterized by recurrence intervals within a broad 80–500 year range, but we find that age-scale uncertainties complicate the possible isolation of any periodic frequency. Lower signal amplitudes in the Last Glacial relative to the Holocene may be related to incongruent effects of firn-based signal smoothing processes. Within interstadial and stadial periods, the peak-to-peak signal amplitudes vary in proportion to the underlying millennial-scale oscillations in CH4_{4} concentration—the relative amplitude change is constant. We propose that the centennial CH4_{4} signal is related to tropical climate variability that influences predominantly low-latitude wetland CH4_{4} emissions.This study was funded by the U.S. National Science Foundation (NSF) grants 0944552, 1142041, and 0968391 to E.J.B. and 0839093 and 1142166 to J.R.M. A European Union Horizon 2020 Marie Curie Individual Fellowship (grant 58120, SEADOG) provided partial support for R.H.R. This work also benefitted from funding to X.F. from the French RPD COCLICO ANR program (ANR-10-RPDOC-002-01), the INSU/LEFE project IceChrono, and the Ars Cuttoli foundation and additionally from the UK Natural Environment Research Council (NERC) grant NE/P009271/1 awarded to L.C.S. Grateful thanks to B. Tournadre for help in Fletcher Promontory ice core analysis. The authors appreciate the support of the WAIS Divide Science Coordination Office at the Desert Research Institute, Reno, NV, USA, and University of New Hampshire, USA, for the collection and distribution of the WD ice core (NSF grants 0230396, 0440817, 0944348, and 0944266). We are grateful to all participants in the field effort led by K. Taylor. The NSF Office of Polar Programs also funded the Ice Drilling Program Office and Ice Drilling Design and Operations group, the National Ice Core Laboratory, Raytheon Polar Services, and the 109th New York Air National Guard

    Atmospheric methane variability: Centennial-scale signals in the Last Glacial Period

    Get PDF
    In order to understand atmospheric methane (CH4_{4}) biogeochemistry now and in the future, we must apprehend its natural variability, without anthropogenic influence. Samples of ancient air trapped within ice cores provide the means to do this. Here we analyze the ultrahigh-resolution CH4_{4} record of the West Antarctic Ice Sheet Divide ice core 67.2–9.8 ka and find novel, atmospheric CH4_{4} variability at centennial time scales throughout the record. This signal is characterized by recurrence intervals within a broad 80–500 year range, but we find that age-scale uncertainties complicate the possible isolation of any periodic frequency. Lower signal amplitudes in the Last Glacial relative to the Holocene may be related to incongruent effects of firn-based signal smoothing processes. Within interstadial and stadial periods, the peak-to-peak signal amplitudes vary in proportion to the underlying millennial-scale oscillations in CH4_{4} concentration—the relative amplitude change is constant. We propose that the centennial CH4_{4} signal is related to tropical climate variability that influences predominantly low-latitude wetland CH4_{4} emissions.This study was funded by the U.S. National Science Foundation (NSF) grants 0944552, 1142041, and 0968391 to E.J.B. and 0839093 and 1142166 to J.R.M. A European Union Horizon 2020 Marie Curie Individual Fellowship (grant 58120, SEADOG) provided partial support for R.H.R. This work also benefitted from funding to X.F. from the French RPD COCLICO ANR program (ANR-10-RPDOC-002-01), the INSU/LEFE project IceChrono, and the Ars Cuttoli foundation and additionally from the UK Natural Environment Research Council (NERC) grant NE/P009271/1 awarded to L.C.S. Grateful thanks to B. Tournadre for help in Fletcher Promontory ice core analysis. The authors appreciate the support of the WAIS Divide Science Coordination Office at the Desert Research Institute, Reno, NV, USA, and University of New Hampshire, USA, for the collection and distribution of the WD ice core (NSF grants 0230396, 0440817, 0944348, and 0944266). We are grateful to all participants in the field effort led by K. Taylor. The NSF Office of Polar Programs also funded the Ice Drilling Program Office and Ice Drilling Design and Operations group, the National Ice Core Laboratory, Raytheon Polar Services, and the 109th New York Air National Guard

    Global ocean heat content in the Last Interglacial

    Get PDF
    The Last Interglacial (129-116 ka) represents one of the warmest climate intervals of the last 800,000 years and the most recent time when sea level was meters higher than today. However, the timing and magnitude of peak warmth varies between reconstructions, and the relative importance of individual sources contributing to elevated sea level (mass gain versus seawater expansion) during the Last Interglacial remains uncertain. Here we present the first mean ocean temperature record for this interval from noble gas measurements in ice cores and constrain the thermal expansion contribution to sea level. Mean ocean temperature reaches its maximum value of 1.1±0.3°C warmer-than-modern at the end of the penultimate deglaciation at 129 ka, resulting in 0.7±0.3m of elevated sea level, relative to present. However, this maximum in ocean heat content is a transient feature; mean ocean temperature decreases in the first several thousand years of the interglacial and achieves a stable, comparable-to-modern value by ~127 ka. The synchroneity of the peak in mean ocean temperature with proxy records of abrupt transitions in oceanic and atmospheric circulation suggests that the mean ocean temperature maximum is related to the accumulation of heat in the ocean interior during the preceding period of reduced overturning circulation

    Hormonal regulation of ovarian bursa fluid in mice and involvement of aquaporins.

    Get PDF
    In rodent species, the ovary and the end of oviduct are encapsulated by a thin membrane called ovarian bursa. The biological functions of ovarian bursa remain unexplored despite its structural arrangement in facilitating oocytes transport into oviduct. In the present study, we observed a rapid fluid accumulation and reabsorption within the ovarian bursa after ovarian stimulation (PMSG-primed hCG injection), suggesting that the ovarian bursa might play an active role in regulating local fluid homeostasis around the timing of ovulation. We hypothesized that the aquaporin proteins, which are specialized channels for water transport, might be involved in this process. By screening the expression of aquaporin family members (Aqp1-9) in the ovarian tissue and isolated ovarian bursa (0, 1, 2 and 5 h after hCG injection), we found that AQP2 and AQP5 mRNA showed dynamic changes after hCG treatment, showing upregulation at 1-2 h followed by gradually decrease at 5 h, which is closely related with the intra-bursa fluid dynamics. Further immunofluorescence examinations of AQP2 and AQP5 in the ovarian bursa revealed that AQP2 is specifically localized in the outer layer (peritoneal side) while AQP5 localized in the inner layer (ovarian side) of the bursa, such cell type specific and spatial-temporal expressions of AQP2 and 5 support our hypothesis that they might be involved in efficient water transport through ovarian bursa under ovulation related hormonal regulation. The physiological significance of aquaporin-mediated water transport in the context of ovarian bursa still awaits further clarification

    Local artifacts in ice core methane records caused by layered bubble trapping and in situ production: A multi-site investigation

    Get PDF
    Advances in trace gas analysis allow localised, non-atmospheric features to be resolved in ice cores, superimposed on the coherent atmospheric signal. These high-frequency signals could not have survived the low-pass filter effect that gas diffusion in the firn exerts on the atmospheric history and therefore do not result from changes in the atmospheric composition at the ice sheet surface. Using continuous methane (CH4_{4}) records obtained from five polar ice cores, we characterise these non-atmospheric signals and explore their origin. Isolated samples, enriched in CH4_{4} in the Tunu13 (Greenland) record are linked to the presence of melt layers. Melting can enrich the methane concentration due to a solubility effect, but we find that an additional in situ process is required to generate the full magnitude of these anomalies. Furthermore, in all the ice cores studied there is evidence of reproducible, decimetre-scale CH4_{4} variability. Through a series of tests, we demonstrate that this is an artifact of layered bubble trapping in a heterogeneous-density firn column; we use the term "trapping signal" for this phenomenon. The peak-to-peak amplitude of the trapping signal is typically 5 ppb, but may exceed 40 ppb. Signal magnitude increases with atmospheric CH4_{4} growth rate and seasonal density contrast, and decreases with accumulation rate. Significant annual periodicity is present in the CH4_{4} variability of two Greenland ice cores, suggesting that layered gas trapping at these sites is controlled by regular, seasonal variations in the physical properties of the firn. Future analytical campaigns should anticipate high-frequency artifacts at high-melt ice core sites or during time periods with high atmospheric CH4_{4} growth rate in order to avoid misinterpretation of such features as past changes in atmospheric composition.Please visit the publisher's website

    Plasmacytoid dendritic cells orchestrate innate and adaptive anti-tumor immunity induced by oncolytic coxsackievirus A21

    Get PDF
    Background: The oncolytic virus, coxsackievirus A21 (CVA21), has shown promise as a single agent in several clinical trials and is now being tested in combination with immune checkpoint blockade. Combination therapies offer the best chance of disease control; however, the design of successful combination strategies requires a deeper understanding of the mechanisms underpinning CVA21 efficacy, in particular, the role of CVA21 anti-tumor immunity. Therefore, this study aimed to examine the ability of CVA21 to induce human anti-tumor immunity, and identify the cellular mechanism responsible. Methods: This study utilized peripheral blood mononuclear cells from i) healthy donors, ii) Acute Myeloid Leukemia (AML) patients, and iii) patients taking part in the STORM clinical trial, who received intravenous CVA21; patients receiving intravenous CVA21 were consented separately in accordance with local institutional ethics review and approval. Collectively, these blood samples were used to characterize the development of innate and adaptive anti-tumor immune responses following CVA21 treatment. Results: An Initial characterization of peripheral blood mononuclear cells, collected from cancer patients following intravenous infusion of CVA21, confirmed that CVA21 activated immune effector cells in patients. Next, using hematological disease models which were sensitive (Multiple Myeloma; MM) or resistant (AML) to CVA21-direct oncolysis, we demonstrated that CVA21 stimulated potent anti-tumor immune responses, including: 1) cytokine-mediated bystander killing; 2) enhanced natural killer cell-mediated cellular cytotoxicity; and 3) priming of tumor-specific cytotoxic T lymphocytes, with specificity towards known tumor-associated antigens. Importantly, immune-mediated killing of both MM and AML, despite AML cells being resistant to CVA21-direct oncolysis, was observed. Upon further examination of the cellular mechanisms responsible for CVA21-induced anti-tumor immunity we have identified the importance of type I IFN for NK cell activation, and demonstrated that both ICAM-1 and plasmacytoid dendritic cells were key mediators of this response. Conclusion: This work supports the development of CVA21 as an immunotherapeutic agent for the treatment of both AML and MM. Additionally, the data presented provides an important insight into the mechanisms of CVA21-mediated immunotherapy to aid the development of clinical biomarkers to predict response and rationalize future drug combinations

    Do adults with high functioning autism or Asperger Syndrome differ in empathy and emotion recognition?

    Get PDF
    The present study examined whether adults with high functioning autism (HFA) showed greater difficulties in (i) their self-reported ability to empathise with others and/or (ii) their ability to read mental states in others’ eyes than adults with Asperger syndrome (AS). The Empathy Quotient (EQ) and ‘Reading the Mind in the Eyes’ Test (Eyes Test) were compared in 43 adults with AS and 43 adults with HFA. No significant difference was observed on EQ score between groups, while adults with AS performed significantly better on the Eyes Test than those with HFA. This suggests that adults with HFA may need more support, particularly in mentalizing and complex emotion recognition, and raises questions about the existence of subgroups within autism spectrum conditions
    • 

    corecore