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 2 

Abstract 1 

Intense volitional hyperpnoea can increase blood lactate concentration ([lac
-
]B), however, 2 

whether this is reduced following pressure-threshold inspiratory muscle training (IMT) is 3 

unknown. We hypothesised that volitional hyperpnoea at a breathing pattern specific to intense 4 

endurance exercise would increase [lac
-
]B and that specific IMT attenuate such a response. 22 5 

physically active males were matched for 85% maximal exercise minute ventilation ( maxVE
 ) 6 

and divided equally into an IMT or a control group. Prior to and following a 6 week intervention, 7 

participants performed 10 min of volitional hyperpnoea at the breathing pattern commensurate 8 

with 85% maxVE
 . The IMT group performed 6 weeks of IMT; the control group performed no 9 

IMT. Maximal inspiratory mouth pressure increased (mean  SD) 31  22% following IMT and 10 

was unchanged in the control group. Prior to the intervention in the control group, [lac
-
]B 11 

increased from 0.76  0.24 mmolL
-1 

at rest to 1.50  0.60 mmolL
-1 

and in the IMT group from 12 

0.85  0.40 mmolL
-1 

at rest to 2.02  0.85 mmolL
-1

 following 10 min volitional hyperpnoea 13 

(P<0.05). Following the intervention the [lac
-
]B response to volitional hyperpnoea was 14 

unchanged in the control group. Conversely, following IMT, [lac
-
]B was reduced by 17  37% 15 

and 25  34% following 8 and 10 min, respectively (P<0.05). In conclusion, increases in [lac
-
]B 16 

during volitional hyperpnoea at  85% maxVE
  were attenuated following IMT. These findings 17 

suggest that the inspiratory muscles were the source of at least part of this reduction, and provide 18 

a possible explanation for some of the IMT-mediated reductions in [lac
-
]B often observed during 19 

whole-body exercise.  20 

 21 

 22 

 23 

 24 

 25 



 3 

Introduction 1 

Specific respiratory muscle training (RMT) can be performed using either voluntary 2 

isocapnic hyperpnoea (VIH), flow-resistive loading, or pressure-threshold loading; with the 3 

exception of VIH, these are commonly referred to as inspiratory muscle training (IMT). 4 

Ventilatory endurance is enhanced with all three techniques, whereas IMT also increases 5 

diaphragm thickness (Downey et al. 2007; Enright et al. 2006) and the maximal strength, 6 

shortening velocity and power of the inspiratory muscles (for a full review see McConnell and 7 

Romer 2004). Furthermore, well controlled studies have shown improvements in endurance 8 

exercise performance following both IMT (Gething et al. 2004; Griffiths and McConnell 2007; 9 

Johnson et al. 2007; Romer et al. 2002a; Volianitis et al. 2001) and VIH (Leddy et al. 2007). 10 

The mechanisms underlying such performance improvements remain speculative but may 11 

include reduced perception of effort (Downey et al. 2007; Gething et al. 2004; Griffiths and 12 

McConnell 2007; Romer et al. 2002a; Verges et al. 2007; Volianitis et al. 2001) and possibly 13 

reductions in both diaphragm fatigue (Verges et al. 2007) and an associated metaboreflex that 14 

attenuates limb blood flow (McConnell and Lomax 2006; Witt et al. 2007). The notion that 15 

genuine physiological adaptation explains, in part, RMT-mediated improvements in endurance 16 

exercise performance is further supported by the frequently observed reduction in blood lactate 17 

concentration ([lac
-
]B) during whole-body exercise following both IMT (Griffiths and 18 

McConnell 2007; McConnell and Sharpe 2005; Romer et al. 2002b; Volianitis et al. 2001) and 19 

VIH (Leddy et al. 2007; Spengler et al. 1999). Furthermore, correlations have been reported 20 

between reductions in [lac
-
]B and performance improvements following RMT (Romer et al. 21 

2002b; Spengler et al. 1999), with up to 52% of the variation in performance being attributed to 22 

the reduced [lac
-
]B (Romer et al. 2002b).  23 

The mechanism(s) by which RMT reduces [lac
-
]B remains equivocal. An RMT-mediated 24 

change in minute ventilation ( EV ), which may conceivably alter both the work of breathing and 25 



 4 

acid base balance, is an unlikely mechanism since reductions in [lac
-
]B following RMT have 1 

been observed irrespective of whether EV  is lower (Leddy et al. 2007), unchanged (McConnell 2 

and Sharpe 2005; Spengler et al. 1999; Volianitis et al. 2001), or increased (Kohl et al. 1997). It 3 

thus appears that the specific, targeted nature of RMT elicits respiratory muscle adaptations that 4 

result in the respiratory muscles being the source of at least part of the reductions observed in 5 

[lac
-
]B.  6 

Modest increases in [lac
-
]B are observed under resting conditions when EV  is increased 7 

for 5 min at 72 % maximal voluntary ventilation (MVV) (Martin et al. 1984), or sustained to 8 

volitional tolerance at ~70 %MVV (Verges et al. 2007). This increase is reduced during an 9 

exhaustive breathing endurance test following VIH training although the reductions observed 10 

following RMT failed to exceed a control and the authors neglect to explain their findings 11 

(Verges et al. 2007). Notwithstanding these findings, previous studies that have employed a 12 

breathing challenge at a given %MVV have little ecological validity with respect to intense 13 

endurance exercise since the breathing pattern adopted during volitional hyperpnoea can 14 

significantly influence the work of breathing (Coast et al. 1993). Thus for volitional hyperpnoea 15 

to reflect the demands of exercise hyperpnoea, EV , respiratory frequency (R), tidal volume (VT) 16 

and duty cycle (TI/TTOT) must be rigourously controlledto that of exercise which has not been 17 

achieved in previous studies. Furthermore, despite VIH reducing [lac
-
]B during an intense 18 

respiratory endurance test to volitional tolerance, it is unknown whether strength based 19 

inspiratory muscle training may also reduce systemic [lac
-
]B given the discrete differences in 20 

training mode. 21 

Therefore, to investigate this issue further the present study examined two hypothesese: 22 

firstly that mimicking at rest the breathing pattern observed during high-intensity endurance 23 

exercise would significantly increase [lac
-
]B, and secondly that 6 weeks of IMT would attenuate 24 

such a response.  25 



 5 

Methods 1 

Subjects 2 

Following approval from Nottingham Trent University’s ethics committee, 22 non-3 

smoking, recreationally active males provided written informed consent to participate in the 4 

study. Throughout the study subjects were instructed to adhere to their usual training regimen 5 

and not to engage in strenuous exercise the day before test days, during which subjects refrained 6 

from ingesting caffeine and arrived at the laboratory 2 h post-prandial. Descriptive 7 

characteristics of the subjects are presented in Table 1.   8 

 9 

Experimental procedure 10 

Baseline pulmonary function and maximum inspiratory mouth pressure (MIP) were 11 

measured during the first laboratory visit. On a separate occasion, subjects then performed a 12 

maximal incremental cycling test, and two 10 min isocapnic volitional hyperpnoea tests (the first 13 

being a familiarisation test); all of these tests were separated by a minimum of 48 hours. The 14 

volitional hyperpnoea tests were performed at the EV , tidal volume (VT), breathing frequency 15 

(R) and duty cycle (TI/TTOT) associated with 85% maximal exercise EV  ( EV max) since pilot 16 

work showed that this was the maximal exercise breathing pattern that could be maintained for 17 

10 min. During the experimental volitional hyperpnoea test expired respiratory and pulmonary 18 

variables were measured breath by breath from min 0 to 10 inclusive and arterialised venous 19 

blood gases, pH and [lac
-
]B was measured at rest and every 2 min thereafter. Subjects were 20 

subsequently matched for 85% EV max and divided into an IMT group (n=11) or a control group 21 

(no IMT; n=11). No more than 1 week following a 6 week intervention MIP was measured and 22 

at least 48 hours following this, subjects repeated the volitional hyperpnoea test. Each subject 23 

completed a 24 h diet record prior to the criterion pre-intervention volitional hyperpnoea test and 24 

this was then replicated during the 24 h prior to the post-intervention volitional hyperpnoea test.  25 
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Pulmonary function, maximal inspiratory pressure, and respiratory measurements 1 

Pulmonary function was assessed using a pneumotachograph (ZAN 600USB, Nspire 2 

Health, Oberthulba, Germany) calibrated using a 3 L syringe. Each measurement was repeated 3 3 

times and the highest recorded value was used for subsequent analysis (Quanjer et al. 1993). A 4 

hand-held mouth pressure meter (Ferraris Respiratory Europe, Hertford, UK) measured MIP as 5 

an index of global inspiratory muscle strength. The mouthpiece assembly incorporated a 1 mm 6 

orifice to prevent glottic closure during inspiratory efforts. Manoeuvres were performed in an 7 

upright standing posture, were initiated from residual volume, and sustained for at least 1 s. 8 

Repeat measurements separated by 30 s were taken until 3 values within 5 cmH2O of each other 9 

were produced (McConnell 2007). The highest recorded value was used for subsequent analysis.  10 

Throughout hyperpnoea trials and the 2OV max test, respiratory variables were measured breath 11 

by breath (ZAN 600USB, Nspire Health, Oberthulba, Germany). Subjects wore a facemask 12 

(model 7940, Hans Rudolph, Kansas City, Missouri) connected to a pneumotachograph, and 13 

during volitional hyperpnoea tests, a two-way non-rebreathing valve (model 2730, Hans 14 

Rudolph, Kansas City, Missouri) was attached distally to the pneumotachograph allowing 15 

additional CO2 to be added to the inspirate. 16 

 17 

Blood sampling and analysis  18 

Arterialised venous blood was sampled from a dorsal hand vein via an indwelling 19 

cannula (Forster et al. 1972; McLoughlin et al. 1992). Arterialisation was ensured by immersing 20 

the hand in water at ~40˚C for 10 min prior to cannulation and by warming the hand during 21 

volitional hyperpnoea tests using an infrared lamp. Blood samples were drawn into a 2 ml pre-22 

heparinsed syringe (PICO 50, Radiometer, Copenhagen, Denmark) and analysed immediately for 23 

blood gases (ABL520, Radiometer, Copenhagen, Denmark), including the partial pressure of 24 

carbon dioxide (PCO2) and pH, and [lac
-
]B (Biosen C_line Sport, EKF Diagnostics, Barleben, 25 
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Germany). Plasma bicarbonate concentration ([HCO3
-
]) was calculated from PCO2 and pH 1 

values using the Henderson Hasselbalch equation: 2 

2

3

CO0.03

][HCO
logpKpH

P




 3 

  4 

[HCO3
-
] was then subsequently incorporated into the Siggaard-Anderson equation to calculate 5 

base excess of the extracellular fluid (BEECF) (Siggaard-Anderson and Fogh-Anderson, 1995): 6 

 7 

  40.7pH83.144.24][HCO93.0BE 3ECF 


 8 

 9 

Maximal exercise test 10 

Subjects performed a maximal incremental cycling test on an electromagnetically-braked 11 

cycle ergometer (Excalibur Sport, Lode, Groningen, The Netherlands). At the onset of the 12 

exercise test, cycling power was 0 W and subsequently increased by 10 W every 15 s in order to 13 

result in exercise intolerance within approximately 10 min. This rapid incremental protocol was 14 

selected to maximise EV  at the cessation of exercise and reflect intense endurance exercise. The 15 

power at which exercise intolerance ensued defined maximal power output ( W max), and the 16 

highest oxygen uptake ( 2OV ) and EV  recorded in any 30 s period defined 2OV max and 17 

EV max, respectively.   18 

 19 

Volitional hyperpnoea  20 

Volitional hyperpnoea was performed whilst seated on the cycle ergometer in an identical 21 

body position to that adopted during the maximal exercise test. Subjects were instructed to 22 

increase EV  and R in a square wave manner to a level commensurate with 85 % EV max. An 23 
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audio metronome paced R and real-time visual feedback of EV  was provided throughout the 1 

test. In order to provide a breathing challenge representative of the work of breathing of intense 2 

exercise hyperpnoea, the volitional hyperpnoea tests was performed at the EV , VT, R and 3 

TI/TTOT associated with 85% EV max since pilot work showed that this was the maximum square 4 

wave response that could be maintained for 10 min. This methodology is deemed superior to an 5 

arbitrary %MVV as it reflects the work of breathing of intense endurance exercise as for a given 6 

EV  greater than approximately 60 Lmin
-1

 the work of breathing of exercise hyperpnoea can 7 

overestimated by as much as 25 % when a spontaneous breathing pattern is adopted during 8 

volitional hyperpnoea (Coast et al. 1993). Isocapnia was maintained during volitional 9 

hyperpnoea by adding CO2 into the inspiratory circuit in order to maintain resting PCO2. Blood 10 

was sampled at rest and at 2 min intervals. 11 

 12 

Intervention 13 

IMT was performed using an inspiratory pressure-threshold device (POWERbreathe®, 14 

Gaiam, UK). The IMT group performed 30 dynamic inspiratory efforts twice daily for 6 weeks 15 

against a pressure-threshold load of 50% MIP. Thereafter, subjects periodically increased the 16 

load to a level that would permit them to only just complete 30 manoeuvres. Each inspiratory 17 

manoeuvre was initiated from residual volume and subjects strove to maximise VT. This protocol 18 

is known to be effective in eliciting an adaptive response (Johnson et al. 2007; McConnell and 19 

Lomax 2006; McConnell and Sharpe 2005; Romer et al. 2002a,b; Volianitis et al. 2001). 20 

Subjects completed a training diary to record IMT adherence and habitual training, which the 21 

control group also recorded. The control group performed no IMT during the 6 week 22 

intervention since the duration and breathing pattern of the volitional hyperpnoea test was fixed 23 

pre and post-intervention (i.e. no measures of performance) and therefore the responses between 24 

groups were not influenced by either motivation or expectation. 25 
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 1 

Statistical analyses 2 

 Statistical analyses were performed using SPSS for Windows (SPSS, Chicago, Illinois, 3 

USA). Pre- and post-intervention results, differences over time during volitional hyperpnoea and 4 

group interactions were compared using one-way or two-way ANOVA for repeated measures 5 

and Tukey’s HSD post-hoc analysis. Pearson product-moment correlation coefficients were 6 

calculated to assess the relationship between selected variables. Statistical significance was set at 7 

P0.05.  Results are presented as mean  SD.  8 

 9 

Results 10 

Pulmonary function and maximal inspiratory pressure 11 

Baseline pulmonary function and MIP were all within normal limits (Table 1). The IMT 12 

group demonstrated excellent training compliance (91% adherence) and subjects’ habitual 13 

training remained unchanged in both IMT and control groups. MIP increased from 147  27 to 14 

189  27 cmH2O (+31  22%) following IMT (P<0.01). No change was observed in the control 15 

group (pre- vs. post-: 163  19 vs. 166  20 cmH2O). 16 

 17 

Responses to volitional hyperpnoea  18 

Ventilatory and acid base responses to volitional hyperpnoea pre- and post-intervention 19 

for the control and IMT groups are shown in Table 2. Throughout hyperpnoea pre- and post-20 

intervention (min 0 to min 10) there were no differences in breathing pattern and acid base 21 

balance between groups (Table 2). EV  during volitional hyperpnoea represented 72  8% and 81 22 

 19% of MVV10 in control and IMT groups, respectively. PCO2 was maintained at resting 23 

levels throughout hyperpnoea and was not different between groups (Figure 1). 24 
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 Prior to the intervention in the control group, [lac
-
]B increased from 0.76  0.24 mmolL

-1 
1 

at rest to 1.50  0.60 mmolL
-1 

and in the IMT group from 0.85  0.40 mmolL
-1 

at rest to 2.02  2 

0.85 mmolL
-1

 following 10 min volitional hyperpnoea (P<0.05) (Figure 2). The non-significant 3 

difference in the absolute increase in [lac
-
]B between groups is likely due to the different relative 4 

loads of the imposed hyperpnoea (control: 72 %MVV; IMT: 81 %MVV). The [lac
-
]B response to 5 

volitional hyperpnoea was unchanged in the control group following the intervention. 6 

Conversely, [lac
-
]B during volitional hyperpnoea was reduced following IMT, with significant 17 7 

 37% and 25  34% reductions being observed at 8 and 10 min, respectively. These changes 8 

were different between groups (significant group  time  trial interaction effect, P<0.05).  9 

 10 

Correlations amongst variables 11 

Prior to the intervention, increases in [lac
-
]B during volitional hyperpnoea were not 12 

correlated with any measure of pulmonary function, MIP, endurance training status ( 2OV max, 13 

maxW ), or ventilatory responses to volitional hyperpnoea. However, baseline MIP was 14 

negatively correlated with relative IMT-induced increases in MIP (r=-0.70, P<0.05).  15 

 16 

Discussion 17 

Main findings  18 

The main findings of this study were that 10 min of volitional hyperpnoea approximately 19 

doubled resting [lac
-
]B, and that 6 weeks of pressure threshold IMT attenuated this increase by 20 

25%. These findings strongly support the notion that the respiratory muscles are capable of 21 

increasing [lac
-
]B and are the first to show that this can be attenuated through specific IMT. This 22 

observation may help to explain some of the RMT-mediated reductions in [lac
-
]B previously 23 

observed during whole-body exercise. 24 

 25 
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Volitional hyperpnoea and blood lactate concentration 1 

We report an increased [lac
-
]B from rest of 0.96  0.58 mmol∙L

-1
 (n=22; range: 0.20 – 2 

2.50 mmol∙L
-1

) during 10 min of intense volitional hyperpnoea at 85% EV max (131  4.36 3 

L∙min
-1

; n=22). These findings contrast those of Spengler et al. (2000) who reported unchanged 4 

[lac
-
]B during volitional hyperpnoea at a lower relative EV  (~62 %MVV; 122.4 Lmin

-1
), 5 

however, are similar to others with a similar relative breathing challenge (72 %MVV, Martin et 6 

al. 1984; 70 %MVV, Verges et al. 2007). These data confirm that increases in [lac
-
]B during 7 

volitional hyperpnoea are positively related to the ratio of EV  to MVV (Martin et al. 1984; 8 

Johnson et al. 2006) and may, in part, explain the different [lac
-
]B responses observed in previous 9 

studies in response to volitional hyperpnoea and between groups in this study. This study 10 

provides novel data that the work of breathing of volitional hyperpnoea when rigorously matched 11 

to high-intensity exercise hyperpnoea is sufficient to result in net lactate release from the 12 

respiratory muscles. 13 

The potential for respiratory alkalosis to elevate [lac
-
]B is well documented (Davies et al. 14 

1986; LeBlanc et al. 2002). Consequently we were careful to maintain, with considerable 15 

accuracy, resting PCO2 throughout the 10 min of volitional hyperpnoea (see Figure 1). Other 16 

measures of acid base status also remained unchanged from rest during volitional hyperpnoea in 17 

both groups pre- and post-intervention. We are thus confident that the increase in [lac
-
]B during 18 

volitional hyperpnoea was not a consequence of respiratory alkalosis and we attribute the 19 

increase in [lac
-
]B to lactate efflux from the respiratory muscles  20 

 21 

Inspiratory muscle training and blood lactate concentration 22 

The attenuated increase in [lac
-
]B during volitional hyperpnoea following IMT is similar 23 

to that observed in healthy subjects performing an exhaustive respiratory endurance test at 70 24 

%MVV following VIH training, although, this reduction did not exceed that of a control (Verges 25 
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et al. 2007). However, the authors fail to report their attempts to maintain end tidal CO2 and / or 1 

PCO2 during the respiratory endurance test, furthermore, subjects were prescribed a pre-2 

determined arbitrary breathing pattern, of which has been criticised previously for failing to 3 

accurately represent the work of breathing of exercise hyperpnoea (Coast et al. 1993). The IMT-4 

mediated reduction in [lac
-
]B observed in the present study is also similar to the reduction often 5 

observed during submaximal, whole-body exercise following both IMT (Griffiths and 6 

McConnell 2007; McConnell and Sharpe 2005; Romer et al. 2002b; Volianitis et al. 2001) and 7 

VIH (Leddy et al. 2007; Spengler et al. 1999), however, whether these observations during 8 

volitional hyperpnoea and exercise share a common mechanistic explanation is unclear.  9 

RMT-mediated reductions in [lac
-
]B at submaximal exercise intensities occur (Leddy et 10 

al. 2007; McConnell and Sharpe 2005) when lactate production and release from the respiratory 11 

muscles is probably negligible given the relative ventilatory demand and the reduced activation 12 

of less efficient accessory muscles (Martin et al. 1984; Johnson et al. 2006). Hence, under such 13 

conditions it seems more likely that reductions in [lac
-
]B result from increased metabolism of 14 

lactate by the trained respiratory muscles (Spengler et al. 1999) rather than a decrease in net 15 

lactate release. Conversely, during high-intensity exercise where EV  is increased above that of 16 

sub-maximal exercise similar to the EV  of volitional hyperpnoea in this study (Kohl et al. 1997: 17 

130.9 Lmin
-1

; Spengler et al. 1999; 147.3 Lmin
-1

), it is possible that IMT-mediated inspiratory 18 

muscle adaptation contributed to lowering [lac
-
]B through affecting both lactate clearance by and 19 

efflux from the trained inspiratory muscles.  20 

The plasticity of the inspiratory muscles has been well documented (McConnell and 21 

Romer 2004; Powers et al. 1997). It is thus attractive to suggest that changes in inspiratory 22 

muscle morphology may explain, in part, the attenuated hyperpnoea-mediated increase in [lac
-
]B 23 

following IMT.. An increase in the content of inspiratory muscle monocarboxylate transport 24 

(MCT) proteins (McConnell and Sharpe 2005), which facilitate inter- and intra-cellular lactate 25 
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shuttling in sarcolemmal and mitochondrial membranes, respectively (Brooks et al. 1999; 1 

Dubouchaud et al. 2000) have been reported following endurance (Baker et al. 1998; 2 

Burgomaster et al. 2007) and strength (Juel et al. 2004) based training regimens. It is possible 3 

that similar adaptations would occur following both IMT (strength-orientated) and VIH 4 

(endurance-orientated) training and may explain, in part, the decrease in [lac
-
]B observed during 5 

whole-body exercise and volitional hyperpnoea. 6 

Diaphragm hypertrophy has been reported with an approximate 10% increase in 7 

diaphragm thickness (Downey et al. 2007; Enright et al. 2006) and 21 % increase in the size of 8 

type II muscle fibres (Ramírez-Sarmiento et al. 2002) occurring after 6 and 5 weeks of IMT, 9 

respectively. Increasing inspiratory muscle fibre cross-sectional area and subsequently strength 10 

decreases the relative intensity for a given absolute work load, which may reduce/delay fast 11 

twitch fibre recruitment and thus lactate production (Marcinik et al. 1991). A decrease in relative 12 

workload per muscle fibre may also decrease blood flow occlusion, which may influence lactate 13 

production and/or clearance (Marcinik et al. 1991).  14 

Finally, the attenuated [lac
-
]B response to volitional hyperpnoea following IMT may also 15 

reside in a training-induced increase in the oxidative capacity of the inspiratory muscles. In 16 

support of this notion, Ramírez-Sarmiento et al. (2002) reported 38% increases in the number of 17 

type I muscle fibres in the external intercostals following 5 weeks IMT. Moderate intensity, high 18 

repetitions strength training, similar to the IMT protocol used in the this study can increase 19 

oxidative enzyme activity (Costill et al. 1979; Sale et al. 1990) and reduce [lac
-
]B via an increase 20 

in mitochondria derived ATP and lactate oxidation (Holloszy and Coyle 1984). Since it is 21 

probable that similar oxidative adaptations would also occur following VIH (endurance-22 

orientated) training (Kohl et al. 1997; Leddy et al. 2007; Spengler et al. 1999), this offers an 23 

attractive explanation for the decrease in [lac
-
]B observed during whole body exercise (Griffiths 24 

and McConnell 2007; Kohl et al. 1997; Leddy et al. 2007; McConnell and Sharpe 2005; Romer 25 
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et al. 2002b; Spengler et al. 1999; Volianitis et al. 2001) and volitional hyperpnoea (present 1 

study; Verges et al. 2007) following these dissimilar training stimuli.  2 

 3 

Inspiratory muscle strength 4 

The 32% increase in MIP following 6 weeks of IMT is consistent with previous studies 5 

(Downey et al. 2007; Edwards and Cooke 2004; Gething et al. 2004; Griffiths and McConnell 6 

2007; McConnell and Sharpe 2005; Romer et al. 2002a,b; Williams et al. 2002). The suggestion 7 

that IMT-mediated increases in MIP are partly dependent upon baseline MIP (Johnson et al. 8 

2007) was substantiated in the present study by the negative correlation (r=-0.70) observed 9 

between these variables. These novel data lend credence to the concept that resistance training-10 

induced increases in strength are partly dependent upon baseline status (Kraemer and Ratamess 11 

2004). However, the significance of our observation is unclear since IMT-mediated increases in 12 

MIP were not related to the reduction in [lac
-
]B, suggesting that an increase in inspiratory muscle 13 

strength per-se is not an important determinant of the physiological adaptations following-IMT.  14 

 15 

Conclusions 16 

In summary, the present study provides novel evidence that increases in [lac
-
]B during 17 

volitional hyperpnoea can be attenuated following IMT. These data thus suggest that the 18 

inspiratory muscles were the source of at least part of this reduction, and provide a possible 19 

explanation for at least some of the IMT-mediated reductions in [lac
-
]B previously observed 20 

during whole-body exercise. The precise mechanisms that underpin these changes remain 21 

unknown, but an IMT-mediated increase in the oxidative and/or lactate transport capacity of the 22 

inspiratory muscles is an attractive possibility that merits further investigation. 23 

 24 

 25 
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Table 1. Descriptive characteristics of the subjects (mean  SD).  1 

 Control (n=11) IMT (n=11) 

Age (years) 28.5  4.1 22.4  4.5 * 

Body mass (kg) 75.5  5.6 78.6  9.7 

Height (cm) 176.9  7.4 181.6  7.6 

FVC (L) 5.32  0.55 (104  8) 5.67  0.92 (106  12) 

FEV1 (L) 4.28  0.62 (99  11) 4.93  0.67 (109  11) 

FEV1/FVC (%) 80.3  7.1 (96  9) 87.7  8.3 (103  9) * 

MVV10 (Lmin
-1

) 176.3  15.0 (102.3±10.9) 173.4  53.7 (122.4±30.3)) 

MIP (cmH2O) 163  19 (113  4) 147  27 (119  5) 

2OV max (Lmin
-1

) 3.75  0.55 3.77  0.75 

maxW (W) 353  44 362  38 

FVC, forced vital capacity; FEV1, forced expiratory volume in 1 s; MVV10, maximum voluntary 2 

ventilation in 10 s. Values in parenthesis represent the percent of predicted values (Quanjer et al. 3 

1993; Wilson et al. 1984). *, P<0.05. 4 
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Table 2. Ventilatory and acid-base responses to volitional hyperpnoea prior to and following the 1 

intervention. Data are mean of min 2 to 10 during volitional hyperpnoea (mean  SD).  2 

 Control (n=11)  IMT (n=11) 

 Pre Post  Pre Post 

EV  (Lmin
-1

) 127.1  2.3 128.7  2.4  132.9  9.6 136.8  3.2 

VT (L) 2.62  0.04 2.64  0.07  2.60  0.03 2.66  0.06 

R (breathsmin
-1

) 50  0 50  0  52  0 52  0 

TI/TTOT 0.44  0.00 0.44  0.00  0.52  0.00 0.49  0.00 

pH 7.392  0.031 7.406  0.024  7.397  0.023 7.395  0.014 

[H
+
]

 
(nmolL

-1
) 40.6  2.9 39.4  2.2  40.2  2.2 40.3  1.0 

[ 

3HCO ] (mmolL
-1

) 26.0  0.9 26.9  2.5  26.5  1.4 27.0  1.3 

BEECF  (mEqL
-1

) 1.38  0.91 1.72  2.04  1.52  1.11 2.35  1.23 

EV  , minute ventilation; VT, tidal volume; R, respiratory frequency; TI/TTOT, duty cycle; [H
+
], 3 

hydrogen ion concentration; [ 

3HCO ], plasma bicarbonate concentration; BEECF, base excess of 4 

the extracellular fluid. 5 
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Fig. 1  Partial pressure of carbon dioxide in arterialised venous blood (PCO2) during volitional 2 

hyperpnoea pre- (○) and post- (●) intervention in control and IMT groups. 3 
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Fig. 2  Blood lactate concentration ([lac
-
]B) during volitional hyperpnoea pre- (○) and post- (●) 2 

intervention in control and IMT groups. *Significant difference from pre-IMT (P<0.05). 3 

†
Significant group  time interaction effect (P<0.05). 4 
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