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Abstract 34 

The Last Interglacial (129-116 ka) represents one of the warmest climate intervals of the last 35 

800,000 years and the most recent time when sea level was meters higher than today. However, the 36 

timing and magnitude of peak warmth varies between reconstructions, and the relative importance of 37 

individual sources contributing to elevated sea level (mass gain versus seawater expansion) during the 38 

Last Interglacial remains uncertain. Here we present the first mean ocean temperature record for this 39 

interval from noble gas measurements in ice cores and constrain the thermal expansion contribution 40 

to sea level. Mean ocean temperature reaches its maximum value of 1.1±0.3°C warmer-than-modern 41 

at the end of the penultimate deglaciation at 129 ka, resulting in 0.7±0.3m of elevated sea level, 42 

relative to present. However, this maximum in ocean heat content is a transient feature; mean ocean 43 

temperature decreases in the first several thousand years of the interglacial and achieves a stable, 44 

comparable-to-modern value by ~127 ka. The synchroneity of the peak in mean ocean temperature 45 

with proxy records of abrupt transitions in oceanic and atmospheric circulation suggests that the mean 46 

ocean temperature maximum is related to the accumulation of heat in the ocean interior during the 47 

preceding period of reduced overturning circulation.  48 

 49 

 50 

Introduction 51 

With a heat capacity one thousand times larger than that of the atmosphere, the ocean plays 52 

an important role in regulating the rate and magnitude of global temperature change and represents 53 

the largest energy reservoir in the climate system1. Ocean heat uptake and warming contribute 54 

directly to increasing sea level through thermal expansion of seawater and may play a role in future 55 

sea level rise through enhanced sub-shelf melting and subsequent mass loss from the Antarctic Ice 56 

Sheet2. To understand the future role of ocean heat uptake, it is instructive to study ocean temperature 57 

change during past warm periods in Earth’s history.  58 

During the Last Interglacial (LIG, 129-116 ka) surface temperatures were warmer than today, 59 

but existing reconstructions differ substantially on the timing and magnitude of peak warmth. A 60 

global average (land and ocean) surface temperature reconstruction3 from a compilation of seasonal 61 

and annual-average temperature records shows a maximum of 2°C warmer temperatures during the 62 

middle of the LIG. A global annual-average sea surface temperature (SST) reconstruction4 shows a 63 

maximum of only 0.5°C warmer-than-preindustrial on a global scale that peaks during the earlier 64 

LIG, but up to 1°C warmer in the high latitudes. Climate models show considerable warmth at the 65 

mid-LIG, especially in the high northern latitudes, but in line with the lack of global insolation 66 

forcing, little warming or even cooler conditions on a global scale5. At the same time, global sea level 67 



during the LIG was 6-9 m higher6. Differences in greenhouse gas and orbital forcing over the LIG 68 

relative to modern make the spatial and temporal patterns of temperature change during this period 69 

distinct from what might be expected from anthropogenic warming7. As a result, the LIG is not an 70 

analogue for future warming but offers a unique opportunity to assess the validity of earth system 71 

model predictions of sea level rise in response to warming, provided that reliable paleoclimate data 72 

exist for model validation8.  73 

Sediment cores provide valuable records of changes in ocean conditions through the LIG4,9–11 74 

and are critical to understanding the spatiotemporal structure of temperature change. However, 75 

because most available records document surface ocean conditions, deducing total ocean heat content 76 

and thermosteric sea level from these records remains challenging.  77 

The measurement of atmospheric noble gases trapped in glacial ice provides a method to 78 

reconstruct changes in mean ocean temperature (MOT) independently from marine records12–14. 79 

Changes in the relative atmospheric concentrations of krypton, xenon and nitrogen trace total ocean 80 

heat content because they are caused by temperature-driven changes in gas solubilities in seawater. 81 

Here, we report measurements of the ratios of Kr/N2, Xe/N2, and Xe/Kr in ice cores from Taylor 82 

Glacier and EPICA Dome C (EDC) ice cores that cover the LIG and penultimate glacial, Marine 83 

Isotope Stage 6 (MIS6, 180-136 ka). We assess the timing and magnitude of ocean temperature 84 

change during the LIG and quantify the thermosteric component of elevated sea level during this 85 

period. 86 

 87 

Last Interglacial mean ocean temperature record 88 

MOT anomalies are calculated relative to the Early Holocene (11– 10 ka) for each ice 89 

core because firn fractionation corrections are more robust when calculating relative MOT change 90 

compared to absolute MOT values (supplement). MOT anomalies relative to the preindustrial and 91 

modern are subsequently calculated using the existing WAIS Divide12 and EDC15 Holocene-to-92 

preindustrial MOT records and preindustrial-to-modern simulations of ocean temperature 93 

change16. Based on Monte Carlo simulations that account for all known sources of uncertainty 94 

(methods), we constrain peak MOT to 1.1±0.3°C (1σ) warmer than modern at 129.0±0.8 ka on 95 

the Antarctic Ice Core Chronology (AICC2012)17 (Figure 1). While data for MIS6 and 96 

Termination II are relatively sparse, the period of maximum MOT is highly resolved (methods). 97 

Because of this and the robust age constraints from trace gas measurements for the Taylor Glacier 98 

record (methods/supplement), the timing of peak MOT is well constrained.   99 

The record shows a 3.4±0.5°C MOT increase from MIS6 to the early LIG, compared to 100 

the LGM to Holocene change of 2.6±0.3°C12. The larger magnitude in glacial-interglacial MOT 101 



change over Termination II versus Termination I is consistent with previous reconstructions of 102 

deep ocean temperature during these intervals from stacks of low-resolution marine records11. 103 

 104 

Comparison to global surface temperature records 105 

Comparison of our MOT record to stacked SST records from marine sediments4 over the 106 

LIG reveal distinct differences between these fundamental climate parameters (Figure 2). The 107 

maximum in MOT occurs earlier and exceeds the magnitude of the global SST maximum. The 108 

magnitude of the peak extratropical SST anomaly agrees well with the peak MOT anomaly, 109 

though the temporal evolution of each record over the LIG appears distinct.  Comparison of the 110 

timing of MOT and SST change is complicated by the lack of absolute age constraints for 111 

sediment and ice core records spanning the LIG, and a 1-2 thousand year offset between the 112 

SpeleoAge18 and AICC2012 chronologies that are applied to the SST and MOT records 113 

respectively19.  However, accounting for the offset in chronologies would actually increase the 114 

offset in the relative timing of the MOT and global SST maxima. 115 

While global SST records are good indicators of the ‘skin temperature’ and thus outgoing 116 

longwave radiation for much of the planet, MOT is closely related to subsurface heat content15. 117 

MOT represents volume-averaged ocean temperature, so changes in intermediate and deep ocean 118 

temperatures (as opposed to SST changes) play a dominant role in setting MOT. Much of the 119 

intermediate and deep ocean’s temperature is set at high latitudes via meridional circulation, so 120 

the polar regions are likely crucial for the structure of MOT change, relative to that of global 121 

SST20.  122 

MOT and Antarctic surface temperature21 records show strikingly similar features 123 

(Figures 2 and 3). Both records are reported on AICC2012, but minor uncertainties in their 124 

alignment may result from error in the Taylor Glacier chronology, or the EDC gas-ice age 125 

difference22. The covariation of MOT and Antarctic temperature during the LIG follows the 126 

pattern recently observed during Termination I12,15 in which mean ocean and high southern 127 

latitude surface warming precede the increase in global SST and appear intrinsically linked. We 128 

thus have strong evidence that changes in MOT outpace and exceed low latitude SST changes 129 

during the LIG, which suggest that polar amplification and intermediate/deep-water formation are 130 

key regulators of MOT.  131 

 132 

Links of MOT and ocean circulation over Termination II/LIG 133 

 Recent studies have investigated the role of the bipolar seesaw, the out-of-phase 134 

temperature variations between hemispheres, in the evolution of glacial terminations10,18,23,24. 135 



While the exact triggering mechanisms are still debated, it is generally accepted that the bipolar 136 

pattern of global temperature anomalies is the result of variations in the strength of the Atlantic 137 

Meridional Overturning Circulation (AMOC)25. When AMOC is in a strong mode, as today, there 138 

is northward heat transport at all latitudes in the Atlantic. When AMOC is weakened, this heat 139 

transport is reduced, leading to a net accumulation of heat in the Southern Hemisphere.  140 

A recent synthesis of available high-resolution records covering Termination II26 141 

including sediment records from the North Atlantic10, Chinese speleothems24, and Antarctic ice 142 

cores27,28 suggest that the AMOC was considerably weakened during Heinrich Stadial 11 (HS11, 143 

~136-129 ka), a cold period in the Northern Hemisphere that covers much of Termination II. At 144 

~129 ka, these proxy records show a rapid recovery of AMOC and Asian monsoon strength, 145 

coinciding with an abrupt shift in Antarctic moisture source27, CH4 increase28, and the peak in 146 

MOT in our reconstruction (Figure 3). Because CH4 and noble gases are measured on the same 147 

ice samples, there is virtually no uncertainty in the relative timing of the abrupt rise in CH4 and 148 

the MOT maximum (supplement). The excellent agreement in the timing of peak MOT 149 

(129.0±1.9 ka, including AICC2012 uncertainty) and the end of HS11 (128.9±0.06 ka) dated 150 

from the Sanbao Cave records24 also suggests an important connection between MOT and the 151 

bipolar seesaw.   152 

Recent modeling studies have examined the impact of reduced AMOC on surface and 153 

subsurface temperature change through freshwater hosing experiments14,25,29. In these simulations, 154 

reduction in AMOC strength results in a globally asymmetric surface pattern of cold Northern 155 

Hemisphere SSTs, as Southern Hemisphere SSTs, MOT, and Antarctica temperatures increase. 156 

At the subsequent recovery of the AMOC, the accumulated subsurface heat is released, leading to 157 

an abrupt increase in Northern Hemisphere SST, and gradual decrease in Southern Hemisphere 158 

SST, Antarctic temperature, and MOT25. This spatiotemporal pattern is consistent with the 159 

observed Antarctic temperature and MOT trends during HS11 and the LIG (Figure 3). As in the 160 

hosing simulations, we observe MOT and Antarctic temperature increase during the weakened 161 

AMOC interval of HS11, reach a maximum at ~129 ka synchronous with AMOC recovery10, and 162 

then decrease during the several thousand years following AMOC recovery. This mechanism is 163 

also consistent with the lead of Southern Hemisphere over Northern Hemisphere high latitude 164 

warming that is observed at the onset of the LIG4,9.   165 

 These observations raise the question30 of how much of the warmer-than-modern MOT in 166 

the early LIG was due to the weakened AMOC state, and how much can be attributed to the 167 

stable interglacial climate. In our record, MOT decreased and eventually stabilized by ~127 ka (at 168 

latest by ~124 ka) at a temperature that is comparable to Holocene/modern MOT (+0.2±0.3°C). If 169 



the observed MOT decrease was due to the release of stored heat post-AMOC recovery, then we 170 

can attribute most of the MOT anomaly at the LIG onset to deglacial changes in ocean 171 

circulation.  172 

While our Termination II record of MOT lacks resolution at its onset, the only observed 173 

warming occurs during the weakened AMOC interval, HS11. Northern Hemisphere insolation 174 

forcing during Termination II exceeded that of Termination I, which may in part explain the 175 

comparatively rapid disintegration of the Northern Hemisphere ice sheets during Termination II, 176 

and long duration of suppressed AMOC due to strong freshwater forcing of the North Atlantic23. 177 

During Termination I the AMOC temporarily recovered, possibly due to the weaker insolation 178 

and thus reduced freshwater forcing31. During this time, both Antarctic temperatures and MOT 179 

decreased (Figure 3). The so-called ‘Antarctic Cold Reversal’, may in many ways be analogous to 180 

the Antarctic and mean ocean cooling observed at the end of Termination II, post-AMOC 181 

recovery. While the magnitude of MOT decrease over the Antarctic Cold Reversal was slightly 182 

smaller than what is observed for the LIG onset, the net mean ocean warming during Heinrich 183 

Stadial I12 and the Younger Dryas32 of 3.4±0.4°C is remarkably similar to the net warming found 184 

from MIS6 to the LIG peak observed in our record (3.4±0.5°C). In addition, the magnitude of 185 

glacial-interglacial change across Termination II once MOT has stabilized is 2.5±0.5°C, which is 186 

comparable to the magnitude of MOT change across Termination I (2.6±0.3°C). Several studies 187 

comparing Terminations I and II have posited that the larger magnitude of changes in Antarctic 188 

temperature27 and CO2
10 across Termination II are related to the delayed recovery of AMOC 189 

strength. Our record suggests the same is true for MOT.  190 

These observations suggest that the AMOC interruptions during the past two terminations 191 

transiently provided an additional ~1°C of mean ocean warming above the net glacial-interglacial 192 

MOT change. A recent quantitative assessment of Earth’s radiative imbalance over Termination 193 

I15 found maxima in positive radiative imbalance during the Younger Dryas and Heinrich Stadial 194 

I, suggesting that reduced AMOC during these intervals contributed energy to the climate system 195 

through an increase in ocean heat storage. This storage and subsequent release of energy may 196 

play a critical role in terminations29. As shown in simulations29, when the AMOC is reduced the 197 

subsurface ocean works as a ‘capacitor’, storing heat while the surface (centered on the North 198 

Atlantic) remains cold. Once the AMOC recovers, the subsurface heat is released, providing 199 

enhanced surface warming. While our MOT record lacks the necessary resolution to conduct a 200 

similar assessment of radiative imbalance across Termination II, the comparable magnitudes of 201 

enhanced mean ocean warming during weakened AMOC intervals over the last two terminations 202 

suggest that this mechanism was also important for Termination II.  Along with the potential 203 



importance of AMOC interruptions in releasing Southern Ocean CO2
33,34 and destabilizing 204 

Northern Hemisphere ice sheets35,36, their role in providing additional energy to the climate 205 

system lends support to the hypothesis that AMOC interruptions are not merely incidental to 206 

terminations, but play a role in driving the climate out of glacial conditions18,24.  207 

 208 

Implications for West Antarctic Ice Sheet stability 209 

 The MOT changes across the LIG have direct and indirect implications for sea level. 210 

Pinning down the sources contributing to the LIG global mean sea level highstand is crucial to 211 

understand the vulnerability of modern ice sheets to global warming. From CMIP5 estimates of 212 

the expansion efficiency of heat (0.12 m YJ-1)37, we find that the 1.1±0.3°C MOT anomaly during 213 

the early stages of the LIG contributed 0.7±0.3m to elevated sea level. By ~127 ka MOT had 214 

decreased to near-modern values, and no appreciable thermosteric contribution (relative to 215 

modern) is expected by this early stage in the interglacial. In fact, our record implies a trend of 216 

thermosteric sea level lowering in the first several thousand years of the LIG. Coral reef records 217 

indicate that sea level was already 5.9±1.7m higher than modern at 128.6±0.8ka38, requiring a 218 

substantial ice sheet (in addition to the thermosteric) contribution early in the LIG to explain this 219 

magnitude of elevated sea level.  220 

The early maximum in MOT may have played another, more indirect role in contributing 221 

to sea level rise during the LIG. In recent Antarctic Ice Sheet simulations of the LIG39,40, ocean 222 

warming played an important role in mass loss from the West Antarctic Ice Sheet.  Ref. 50 found 223 

that if ocean warming occurred shortly after the glacial termination, the West Antarctic Ice Sheet 224 

was more prone to lose mass because of enhanced reverse-sloped beds at grounding lines. By 225 

invoking sub-shelf melting through Southern Ocean warming, ref. 51 derived the highest rates of 226 

sea level rise during maximum Antarctic temperatures at the end of Termination II, synchronous 227 

to our MOT maximum. The delay in AMOC recovery and resulting accumulation of heat in the 228 

ocean interior and Southern Hemisphere at the end of Termination II may therefore have played 229 

an important role in West Antarctic Ice Sheet mass loss and elevated sea level during the LIG.  230 

An important caveat to consider for this hypothesis is that MOT is not a proxy for ocean 231 

temperatures directly under ice shelves, and higher MOT does not necessarily imply that 232 

temperatures in vulnerable sub-ice shelf regions were enhanced. However, MOT and the 233 

temperature of circumpolar deep water are intrinsically linked because circumpolar deep water is 234 

made up of a representative mixture of waters from all ocean basins41 and is brought efficiently to 235 

the surface by isopycnal mixing in the Southern Ocean. If, as today, circumpolar deep water 236 



intruded onto the Antarctic continental shelf, its ice melting capacity would be enhanced during 237 

the early stages of the LIG.  238 

 239 

Conclusions  240 

The ocean heat anomaly provided from our MOT reconstruction is a simple but important 241 

metric to evaluate in earth system models, making it useful for forthcoming simulations of the 242 

LIG. Comparison with other proxy and model results suggest that peak MOT coincided with the 243 

abrupt recovery of the AMOC at the end of Termination II and was a transient rather than stable 244 

feature of the LIG. Enhanced MOT contributed to elevated thermosteric sea level during the early 245 

stages of the LIG and may have played a more indirect role in the sea level highstand through 246 

amplified melting of ice sheets and shelves from below. The temporal evolution of AMOC and 247 

MOT over the past two terminations suggest that the ocean’s overturning circulation plays a 248 

dominant role in controlling the timing and magnitude of MOT change across terminations; 249 

studying the LIG in the context of the termination that preceded it provides a more complete view 250 

of the climate evolution that occurred over this interval.  251 

 252 
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 408 

Figure Captions 409 

 410 

Figure 1. Mean Ocean Temperature (MOT) anomaly from Kr/N2, Xe/N2, and Xe/Kr. MOT 411 
data is shown with 1σ error (methods). Vertical dashed lines mark the Marine Isotope Stage 6 412 
(MIS6), Heinrich Stadial 11 (HS11) and Last Interglacial (LIG) boundaries. Gray bars indicate 413 
the time intervals for which MIS6 MOT (>136 ka), peak MOT (129.0±0.8 ka), and stable LIG 414 
MOT (<127 ka) are calculated. MOT is reported on the AICC201217 chronology. Global average 415 
deep ocean temperature (DOT) from stacked marine sediment records11 on LR0442 is shown for 416 
reference.  417 
 418 

 419 

Figure 2. Surface and mean ocean temperature (MOT) anomalies during the LIG. a) global 420 
and b) extratropical sea surface temperatures (SST) (relative to preindustrial) from the Northern 421 
Hemisphere (red) and Southern Hemisphere (blue) from stacked SST proxy records4 on the 422 
SpeleoAge chronology18. Shading shows 2σ confidence interval. c) MOT (relative to modern) on 423 



AICC201217 with 1σ error bars (points) and 1σ confidence envelope (shading). d) EPICA Dome 424 
C (EDC) surface air temperature21 (SAT, relative to average of last 1000 years)  on AICC2012.  425 
 426 
Figure 3. Climate records of Terminations II and I. Left panel: climate records of Termination 427 
II. a) Mean ocean temperature (MOT) anomaly relative to modern from this study with 1σ error 428 
(shading). b) Antarctic temperature21 anomaly relative to average of last 1000 years, c) CO2

43, and 429 
d) CH4

28. Green points show Taylor Glacier CH4 measurements. a)-d) are presented on 430 
AICC201217. e) Sanbao24,44 230Th-dated δ18Ocalcite records. Colors distinguish individual 431 
speleothems. f) North Atlantic ϵNd10 on core-specific age scale. g) Red Sea Level anomaly 432 
corrected for isostatic effects45 on core-specific age scale (light blue). Gray diamonds show coral 433 
reef sea level records38. h) Summer solstice insolation at 65°N. Right panel: climate records of 434 
Termination I with differences from left panel as follows. a) MOT anomaly relative to modern 435 
from WAIS Divide12 (turquoise) and Taylor Glacier32 (dark blue). Error bars show spread (1σ) of 436 
replicate samples measured at SIO for this study (supplement). c) CO2

46, and d) CH4
47. a), c) and 437 

d) are presented on WD201448. e) Dongge49 (red) and Hulu50 (orange and yellow) δ18Ocalcite 438 
records.  f) North Atlantic ϵNd51 on core-specific age scale g) eustatic sea level52 with 1σ error 439 
from radiocarbon/uranium-series dated coral and sediment records. Orange bars indicate times 440 
when AMOC was in a weakened mode and blue bars show periods of strong AMOC and mean 441 
ocean/Antarctic cooling. Top panel: benthic δ18O on LR0442. Gray bars highlight the intervals 442 
shown in the panels below.  443 
 444 
 445 
Methods 446 
 447 
Taylor Glacier sampling and site description 448 
 449 
 Taylor Glacier is an outlet glacier of the East Antarctic Ice Sheet with a >80 km long 450 
ablation zone exposing easily accessible old ice at the surface. Its accumulation zone is located on 451 
the northern flank of Taylor Dome and it terminates in Taylor Valley. Extensive work on 452 
mapping the stratigraphy of the glacier identified ice from the LIG located near the terminus of 453 
the glacier53–55.  454 
 For this study, a total of four large-diameter ice cores were collected during the 2014/15 455 
and 2015/16 Antarctic field seasons (Figure S1 in supplement). Two cores spanning 456 
approximately 155 – 120 ka were collected approximately 4 km from the glacier terminus. 457 
Additionally, two cores were drilled along a previously-established across-flow transect53 from 458 
the early Holocene (10.6 ka) and Last Glacial Maximum (LGM, 19.9 ka) to serve as a 459 
comparison to LIG and MIS6 MOT samples. Cores were drilled with the Blue Ice Drill56 and are 460 
24.1 cm in diameter. Cores were processed and subdivided in the field and analyzed for noble 461 
gases for MOT reconstruction as well as other atmospheric gases used to establish the chronology 462 
of the record.   463 
 464 
Taylor Glacier core chronology 465 
 466 

A major challenge in sampling a blue ice area is establishing ages for the samples57. Ice 467 
from Taylor Glacier has traveled tens of kilometers from its deposition site and has likely 468 
undergone non-uniform thinning and folding. While the dynamics of the glacier have been 469 
studied in detail58,59, not enough is known about the basal topography or subsurface ice flow to 470 
build a chronology for the glacier from a glaciological model.   471 
 We therefore use alternative methods to construct the chronology for our samples. 472 
Previous work in blue ice areas53,60–62 has demonstrated success in establishing ice sample 473 
chronologies through value and/or inflection point matching of well-mixed atmospheric gases to 474 



well-dated ice core records63.  For this study the chronology was constructed using a least-squares 475 
fitting method with measurements of methane concentrations (CH4), molecular oxygen isotopic 476 
composition (δ18Oatm), and carbon dioxide concentrations (CO2), tied to EPICA Dome C (EDC) 477 
reference records28,43,64 on the Antarctic Ice Core Chronology (AICC2012)17,65. This method 478 
allows for a construction of an age probability distribution for each noble gas sample that can be 479 
used to assess sample age uncertainty (supplement).   480 
 481 
Taylor Glacier noble gas measurements 482 
 483 

Taylor Glacier measurements of noble gases for MOT reconstruction were made at 484 
Scripps Institution of Oceanography (SIO). A total of 45 ice samples from the 2014/15 and 485 
2015/16 cores were analyzed, including eight replicate samples, giving 37 unique MOT samples. 486 
Of the 45 samples, 3 were rejected due to sample age uncertainty (see supplement). In addition, at 487 
SIO and Bern five samples from the Holocene (10.6 ka) and five from the LGM (19.9 ka) were 488 
measured (Figure 3) at each institution. The motivation for this analysis was to verify the quality 489 
of the noble gas records by comparison to published MOT records12, and to verify that any offsets 490 
in the EDC and Taylor Glacier MOT results were unrelated to lab offsets (see supplementary 491 
materials).  492 

The analytical methods for noble gas measurements are described in detail by Bereiter et 493 
al. (2018b). In short, ~800 grams of ice were melted under vacuum and liberated gases (~80 ml at 494 
standard temperature and pressure, STP) were cryogenically trapped in stainless steel dip tubes. 495 
After gas extraction, the samples were split into two aliquots. The larger (~78 ml STP) aliquot 496 
was exposed to a Zr/Al alloy at 900°C to remove all non-noble gases and measured on a Thermo-497 
Finnigan MAT-253 isotope ratio mass spectrometer via dual inlet method for 40Ar/38Ar (δ40/38Ar), 498 
40Ar/36Ar (δ40/36Ar), 86Kr/84Kr (δ86/84Kr), 86Kr/83Kr (δ86/83Kr), 86Kr/82Kr (δ86/82Kr), 84Kr/40Ar 499 
(δKr/Ar), and 132Xe/40Ar (δXe/Ar). The smaller aliquot (~2 ml, STP) was passed through a 500 
cryotrap (-196°C) to remove CO2 and measured on a Thermo-Finnigan MAT Delta V isotope 501 
ratio mass spectrometer via dual inlet method for 29N2/

28N2 (δ15N), 34O2/
32O2 (δ18O), 32O2/

28N2 502 
(δO2/N2), and 40Ar/28N2 (δAr/N2). Measurements were corrected for pressure imbalance and 503 
chemical slope according to established procedure67.  504 

All data are reported in delta notation, relative to a modern atmosphere standard. Because 505 
argon is preferentially lost relative to xenon and krypton during ice bubble formation68, we 506 
mathematically combine δXe/Ar, δKr/Ar, and δAr/N2 to obtain δKr/N2, δXe/N2, and δXe/Kr. 507 
 508 
Taylor Glacier fractionation corrections 509 
 510 

 To reconstruct ocean temperature from Kr/N2, Xe/N2 and Xe/Kr, it is necessary to correct 511 
for fractionation during firnification, the process by which fresh snow compacts, transitioning to 512 
denser firn and eventually to glacial ice containing air trapped in bubbles. While the free 513 
troposphere is well mixed through convective processes, the low permeability of the firn restricts 514 
bulk flow; gases within the firn column are transported primarily via molecular diffusion69. This 515 
allows for gravitational settling and thermal diffusion to alter firn air from its atmospheric 516 
composition before it is occluded in glacial ice70,71. As such, Kr/N2, Xe/N2 and Xe/Kr must be 517 
corrected for fractionating processes to derive the paleoatmospheric composition for inferring 518 
MOT.  519 

As suggested by ref. 12, under/over-correction of fractionation may lead to systematic 520 
offsets in MOT, but the effect primarily impacts the absolute MOT anomaly (relative to modern) 521 
and has little impact on relative MOT change within a record. We investigate the influence of the 522 
choice in methods of fractionation correction on the MOT record and find that different methods 523 
shift the absolute MOT record up or down but have little effect on relative MOT change in the 524 



Taylor Glacier record (see supplement). We thus compute the MOT anomalies relative to the 525 
Taylor Glacier Holocene (10.6 ka) samples and then estimate the Holocene – modern MOT 526 
difference (and uncertainties) from the WAIS Divide MOT record and model simulations of 527 
ocean heat content over the last 2000 years16. A detailed description and assessment of the 528 
fractionation corrections is included in the supplementary materials.  529 
 530 
EDC ice core noble gas analysis 531 
 532 

Four EDC ice core samples from the LIG and four from MIS6 were analyzed at the 533 
University of Bern and included in this study. Measurement and data processing for these 534 
samples are similar to the analysis of Taylor Glacier samples with a few important distinctions 535 
(ref. 15 and supplement). Chronological uncertainties are not considered in this analysis, because 536 
the Taylor Glacier chronology is tied to that of EDC through ice core synchronization and 537 
contribute minimally to the total uncertainty for these samples. In addition, the approach to firn 538 
fractionation corrections differs slightly between Taylor Glacier and EDC (supplementary section 539 
SI4).  540 
 541 
Derivation of MOT from noble gas data 542 
 543 
 To reconstruct MOT values from fractionation-corrected Kr/N2, Xe/N2 and Xe/Kr, we use 544 
the ocean-atmosphere box model of ref. 12 with several modifications. We make no assumptions 545 
about the glacial-interglacial change in the ocean saturation state and use current estimates of 546 
krypton and xenon undersaturation72 in the box model for the entirety of the record. We also do 547 
not invoke the glacial-interglacial changes in the relative water mass distributions that were 548 
applied in ref. 12 and use the modern distributions of Antarctic Bottom Water and North Atlantic 549 
Deep Water to derive MOT over the full record.  550 

We account for the effects of changes in ocean salinity, volume, and atmospheric 551 
pressure on the oceanic inventories of krypton, xenon and nitrogen using the sea level record of 552 
ref. 34 corrected for isostatic effects (supplement). We also include the influence of the large ice 553 
shelf over the Arctic during MIS6, which holds the equivalent of 15 meters of sea level, 554 
influencing ocean salinity and volume, but not sea level73.  555 

To assess uncertainty in our MOT record we run 10,000 Monte Carlo simulations of our 556 
reconstruction with all known analytical and dating uncertainties in the MOT and sea level 557 
records, as well as the uncertainty in the Holocene-to-modern MOT change. We include 558 
uncertainties in measured Kr/N2, Xe/N2 and Xe/Kr and the isotope data used to correct for firn 559 
processes in our simulations, as well as the method used for fractionation corrections 560 
(supplementary section SI4). To account for age uncertainties in the MOT record, we use an 561 
inverse transform method74 to randomly sample from our age probability distribution to include in 562 
our Monte Carlo simulations. For our final uncertainty estimate, we use the average of the three 563 
MOT records (and the Monte Carlo simulations) from Kr/N2, Xe/N2 and Xe/Kr to minimize the 564 
influence of analytical noise from any single measurement.  565 
 The 1σ confidence envelope shown in Figures 2 and 3 was constructed using the 566 
MATLAB cubic smoothing spline function (csaps) with a 2500 year cut off period on the 10,000 567 
Monte Carlo MOT reconstructions. Each reconstruction was resampled using a bootstrapping 568 
method before the spline was produced. The 1σ confidence envelope was then calculated from 569 
the distribution of the Monte Carlo splines at each time interval in the record.   570 
 571 
Data availability 572 
Presented data are available online at http://www.usap-dc.org/view/dataset/601218. 573 
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