328 research outputs found

    Extremely red objects in the fields of high redshift radio galaxies

    Get PDF
    We are engaged in a program of infrared imaging photometry of high redshift radio galaxies. The observations are being done using NICMOS2 and NICMOS3 arrays on the DuPont 100-inch telescope at Las Campanas Observatory. In addition, Persson and Matthews are measuring the spectral energy distributions of normal cluster galaxies in the redshift range 0 to 1. These measurements are being done with a 58 x 62 InSb array on the Palomar 5-m telescope. During the course of these observations we have imaged roughly 20 square arcminutes of sky to limiting magnitudes greater than 20 in the J, H, and K passbands (3 sigma in 3 square arcseconds). We have detected several relatively bright, extremely red, extended objects during the course of this work. Because the radio galaxy program requires Thuan-Gunn gri photometry, we are able to construct rough photometric energy distributions for many of the objects. A sample of the galaxy magnitudes within 4 arcseconds diameter is given. All the detections are real; either the objects show up at several wavelengths, or in subsets of the data. The reddest object in the table, 9ab'B' was found in a field of galaxies in a rich cluster at z = 0.4; 9ab'A' lies 8 arcseconds from it

    Decoupling of Sleep-Dependent Cortical and Hippocampal Interactions in a Neurodevelopmental Model of Schizophrenia

    Get PDF
    SummaryRhythmic neural network activity patterns are defining features of sleep, but interdependencies between limbic and cortical oscillations at different frequencies and their functional roles have not been fully resolved. This is particularly important given evidence linking abnormal sleep architecture and memory consolidation in psychiatric diseases. Using EEG, local field potential (LFP), and unit recordings in rats, we show that anteroposterior propagation of neocortical slow-waves coordinates timing of hippocampal ripples and prefrontal cortical spindles during NREM sleep. This coordination is selectively disrupted in a rat neurodevelopmental model of schizophrenia: fragmented NREM sleep and impaired slow-wave propagation in the model culminate in deficient ripple-spindle coordination and disrupted spike timing, potentially as a consequence of interneuronal abnormalities reflected by reduced parvalbumin expression. These data further define the interrelationships among slow-wave, spindle, and ripple events, indicating that sleep disturbances may be associated with state-dependent decoupling of hippocampal and cortical circuits in psychiatric diseases

    The Chicken Yolk Sac IgY Receptor, a Mammalian Mannose Receptor Family Member, Transcytoses IgY across Polarized Epithelial Cells

    Get PDF
    In mammals the transfer of passive immunity from mother to young is mediated by the MHC-related receptor FcRn, which transports maternal IgG across epithelial cell barriers. In birds, maternal IgY in egg yolk is transferred across the yolk sac to passively immunize chicks during gestation and early independent life. The chicken yolk sac IgY receptor (FcRY) is the ortholog of the mammalian phospholipase A2 receptor, a mannose receptor family member, rather than an FcRn or MHC homolog. FcRn and FcRY both exhibit ligand binding at the acidic pH of endosomes and ligand release at the slightly basic pH of blood. Here we show that FcRY expressed in polarized mammalian epithelial cells functioned in endocytosis, bidirectional transcytosis, and recycling of chicken FcY/IgY. Confocal immunofluorescence studies demonstrated that IgY binding and endocytosis occurred at acidic but not basic pH, mimicking pH-dependent uptake of IgG by FcRn. Colocalization studies showed FcRY-mediated internalization via clathrin-coated pits and transport involving early and recycling endosomes. Disruption of microtubules partially inhibited apical-to-basolateral and basolateral-to-apical transcytosis, but not recycling, suggesting the use of different trafficking machinery. Our results represent the first cell biological evidence of functional equivalence between FcRY and FcRn and provide an intriguing example of how evolution can give rise to systems in which similar biological requirements in different species are satisfied utilizing distinct protein folds

    Mass and pressure constraints on galaxy clusters from interferometric SZ observations

    Full text link
    Following on our previous study of an analytic parametric model to describe the baryonic and dark matter distributions in clusters of galaxies with spherical symmetry, we perform an SZ analysis of a set of simulated clusters and present their mass and pressure profiles. The simulated clusters span a wide range in mass, 2.0 x 10^14 Msun < M200 < 1.0 x 10^15Msun, and observations with the Arcminute Microkelvin Imager (AMI) are simulated through their Sunyaev- Zel'dovich (SZ) effect. We assume that the dark matter density follows a Navarro, Frenk and White (NFW) profile and that the gas pressure is described by a generalised NFW (GNFW) profile. By numerically exploring the probability distributions of the cluster parameters given simulated interferometric SZ data in the context of Bayesian methods, we investigate the capability of this model and analysis technique to return the simulated clusters input quantities. We show that considering the mass and redshift dependency of the cluster halo concentration parameter is crucial in obtaining an unbiased cluster mass estimate and hence deriving the radial profiles of the enclosed total mass and the gas pressure out to r200.Comment: 5 pages, 2 tables, 3 figure

    Sunyaev-Zel'dovich observations of galaxy clusters out to the virial radius with the Arcminute Microkelvin Imager

    Get PDF
    We present observations using the Small Array of the Arcminute Microkelvin Imager (AMI; 14-18 GHz) of four Abell and three MACS clusters spanning 0.171-0.686 in redshift. We detect Sunyaev-Zel'dovich (SZ) signals in five of these without any attempt at source subtraction, although strong source contamination is present. With radio-source measurements from high-resolution observations, and under the assumptions of spherical β\beta-model, isothermality and hydrostatic equilibrium, a Bayesian analysis of the data in the visibility plane detects extended SZ decrements in all seven clusters over and above receiver noise, radio sources and primary CMB imprints. Bayesian evidence ratios range from 10^{11}:1 to 10^{43}:1 for six of the clusters and 3000:1 for one with substantially less data than the others. We present posterior probability distributions for, e.g., total mass and gas fraction averaged over radii internal to which the mean overdensity is 1000, 500 and 200, r_200 being the virial radius. Reaching r_200 involves some extrapolation for the nearer clusters but not for the more-distant ones. We find that our estimates of gas fraction are low (compared with most in the literature) and decrease with increasing radius. These results appear to be consistent with the notion that gas temperature in fact falls with distance (away from near the cluster centre) out to the virial radius.Comment: 18 pages, 10 figures, submitted to MNRAS (updated authors and fixed Figure 1

    Measurement of Inclusive Spin Structure Functions of the Deuteron

    Full text link
    We report the results of a new measurement of spin structure functions of the deuteron in the region of moderate momentum transfer (Q2Q^2 = 0.27 -- 1.3 (GeV/c)2^2) and final hadronic state mass in the nucleon resonance region (WW = 1.08 -- 2.0 GeV). We scattered a 2.5 GeV polarized continuous electron beam at Jefferson Lab off a dynamically polarized cryogenic solid state target (15^{15}ND3_3) and detected the scattered electrons with the CEBAF Large Acceptance Spectrometer (CLAS). From our data, we extract the longitudinal double spin asymmetry AA_{||} and the spin structure function g1dg_1^d. Our data are generally in reasonable agreement with existing data from SLAC where they overlap, and they represent a substantial improvement in statistical precision. We compare our results with expectations for resonance asymmetries and extrapolated deep inelastic scaling results. Finally, we evaluate the first moment of the structure function g1dg_1^d and study its approach to both the deep inelastic limit at large Q2Q^2 and to the Gerasimov-Drell-Hearn sum rule at the real photon limit (Q20Q^2 \to 0). We find that the first moment varies rapidly in the Q2Q^2 range of our experiment and crosses zero at Q2Q^2 between 0.5 and 0.8 (GeV/c)2^2, indicating the importance of the Δ\Delta resonance at these momentum transfers.Comment: 13 pages, 8 figures, ReVTeX 4, final version as accepted by Phys. Rev.

    A simple parametric model for spherical galaxy clusters

    Full text link
    We present an analytic parametric model to describe the baryonic and dark matter distributions in clusters of galaxies with spherical symmetry. It is assumed that the dark matter density follows a Navarro, Frenk and White (NFW) profile and that the gas pressure is described by a generalised NFW (GNFW) profile. By further demanding hydrostatic equilibrium and that the gas fraction is small throughout the cluster, one obtains unique functional forms, dependent on basic cluster parameters, for the radial profiles of all the properties of interest in the cluster. We show these profiles are consistent both with numerical simulations and multi-wavelength observations of clusters. We also use our model to analyse six simulated SZ clusters as well as A611 SZ data from the Arcminute Microkelvin Imager (AMI). In each case, we derive the radial profile of the enclosed total mass and the gas pressure and show that the results are in good agreement with our model prediction.Comment: 10 pages, 3 table, 17 figure

    Impact of a quadrivalent meningococcal ACWY glycoconjugate or a serogroup B meningococcal vaccine on meningococcal carriage: an observer-blind, phase 3 randomised clinical trial

    Get PDF
    Background: Meningococcal conjugate vaccines protect individuals directly, but also confer herd protection by interrupting carriage transmission. This Phase III observer-blind, randomised, controlled study evaluated the effects of meningococcal quadrivalent (ACWY) glycoconjugate (MenACWY-CRM) or serogroup B (4CMenB) vaccination on meningococcal carriage rates in young adults. Methods: University students (aged 18–24 years) from ten sites in England were randomised to receive two vaccinations one month apart: two doses of Japanese Encephalitis vaccine (controls), two doses of 4CMenB (4CMenB), or one dose of MenACWY-CRM then placebo (MenACWY-CRM). Meningococci were isolated from oropharyngeal swabs collected before vaccination and at five scheduled intervals over one year. Primary analysis was cross-sectional carriage one month after the vaccine course; secondary analyses included comparison of carriage at any time point after primary analysis until study termination. Findings: 2954 subjects were randomised (control, n=987; 4CMenB, n=988; MenACWY-CRM, n=979); approximately one-third of each group was positive for meningococcal carriage at study entry. By one month, there was no significant difference in carriage between controls and 4CMenB (Odds Ratios (OR) [95% CI]; 1·2 [0·8−1·7]) or MenACWY-CRM (OR [95% CI], 0·9 [0·6–1·3]) groups. From three months after dose two, 4CMenB vaccination resulted in significantly lower carriage of any meningococcal strain (calculated efficacy 18·2% [95% CI: 3·4–30·8]) and capsular groups BCWY (calculated efficacy 26·6% [95% CI: 10·5–39·9]) compared to control vaccination. Significantly lower carriage rates were also observed in the MenACWY-CRM group compared with controls: calculated efficacies 39·0% [95%CI: 17·3-55·0] and 36.2% [95%CI: 15·6-51·7] for serogroups Y and CWY, respectively. Interpretation: MenACWY-CRM and 4CMenB vaccines reduced meningococcal carriage rates over 12 months post-vaccination and, therefore, may affect transmission where widely implemented

    Genome-wide association of functional traits linked with<i> Campylobacter jejuni </i>survival from farm to fork

    Get PDF
    Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, primarily associated with the consumption of contaminated poultry. C. jejuni lineages vary in host range and prevalence in human infection, suggesting differences in survival throughout the poultry processing chain. From 7,343 MLST-characterised isolates, we sequenced 600 C. jejuni and C. coli isolates from various stages of poultry processing and clinical cases. A genome-wide association study (GWAS) in C. jejuni ST-21 and ST-45 complexes identified genetic elements over-represented in clinical isolates that increased in frequency throughout the poultry processing chain. Disease-associated SNPs were distinct in these complexes, sometimes organised in haplotype blocks. The function of genes containing associated elements was investigated, demonstrating roles for cj1377c in formate metabolism, nuoK in aerobic survival and oxidative respiration, and cj1368-70 in nucleotide salvage. This work demonstrates the utility of GWAS for investigating transmission in natural zoonotic pathogen populations and provides evidence that major C. jejuni lineages have distinct genotypes associated with survival, within the host specific niche, from farm to fork. </p
    corecore