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ABSTRACT

Group II metabotropic glutamate receptors (mGluR2 and mGIuR3) are implicated in a number of psy-
chiatric disorders. They also control sleep-wake architecture and may offer novel therapeutic targets.
However, the roles of the mGIuR2 versus mGIuR3 subtypes are not well understood. Here, we have taken
advantage of the recently described mutant strain of Han Wistar rats, which do not express mGluR2
receptors, to investigate behavioural, sleep and EEG responses to mGluR2/3 ligands.

The mGIuR2/3 agonist, LY354740 (10 mg/kg), reversed amphetamine- and phencyclidine-induced
locomotion and rearing behaviours in control Wistar but not in mGluR2 lacking Han Wistar rats. In
control Wistar but not in Han Wistar rats the mGIluR2/3 agonist LY379268 (3 & 10 mg/kg) induced REM
sleep suppression with dose-dependent effects on wake and NREM sleep. By contrast, the mGIluR2/3
antagonist LY3020371 (3 & 10 mg/kg) had wake-promoting effects in both rat strains, albeit smaller in
the mGluR2-lacking Han Wistar rats, indicating both mGluR2 and mGluR3-mediated effects on wake-
fulness. LY3020371 enhanced wake cortical oscillations in the theta (4—9 Hz) and gamma (30—80 Hz)
range in both Wistar and Han Wistar rat strains, whereas LY379268 reduced theta and gamma oscilla-
tions in control Wistar rats, with minimal effects in Han Wistar rats.

Together these studies illustrate the significant contribution of mGIuR2 to the antipsychotic-like, sleep
and EEG effects of drugs acting on group II mGluRs. However, we also provide evidence of a role for
mGluR3 activity in the control of sleep and wake cortical theta and gamma oscillations.

© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

neurotransmitters such as glutamate and GABA (Di lorio et al.,
1996; Jones et al., 1998; Cartmell and Schoepp, 2000; Smolders

Modulation of glutamate neurotransmission through group II
metabotropic glutamate receptors (mGluR2 and mGIluR3) is an area
of promise for the treatment of psychiatric and neurological dis-
orders (Niswender and Conn, 2010; Nicoletti et al., 2011; Chaki
et al., 2013; Li et al., 2015). These receptors are primarily consid-
ered as auto- and hetero-receptors that reduce the release of

Abbreviations: EEG, electroencephalography; mGIluR2, metabotropic glutamate
receptor 2; mGIuR3, metabotropic glutamate receptor 3; HFO, high frequency os-
cillations; Grm2, glutamate receptor metabotropic 2.
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et al, 2004). These actions occur through inhibitory Gaijj
signaling that reduces cAMP formation and modulates pathways
such as PKA and ERK/MAPK (Tanabe et al., 1992; Pin and Duvoisin,
1995; Harris et al., 2004). Effects mediated through GB/y proteins
modulate exocytosis through inhibition of calcium channels and
activation of potassium channels (Chavis et al., 1994; Knoflach and
Kemp, 1998). Furthermore, mGluR2/3 can also mediate changes in
excitatory and inhibitory neurotransmission through altering
NMDA and AMPA receptor function (Tyszkiewicz et al., 2004; Xi
et al.,, 2011; Wang et al., 2013).

Involvement of glutamate in the pathophysiology of schizo-
phrenia is an established hypothesis (Olney and Farber, 1995;
Tamminga, 1998; Carlsson et al., 2001; Coyle and Tsai, 2004; Javitt,

0028-3908/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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2010) with aberrant glutamatergic neurotransmission suggested to
be central to the disorder (Javitt and Zukin, 1991). Preclinical work
has shown that mGluR2/3 receptor agonists have antipsychotic-like
effects in a number of behavioural models (Moghaddam and
Adams, 1998; Cartmell et al., 2000; Fell et al., 2008; Jones et al.,
2011; but also see Cartmell et al., 1999) with data in knockout
mice suggesting mGluR2 are critical for these effects (Spooren et al.,
2000; Johnson et al., 2005; Rorick-Kehn et al., 2007; Woolley et al.,
2008). Whilst limitations are associated with behavioural models
that study antipsychotic-like effects, such as the reversal of
psychotomimetic-induced behaviours, they are widely used to
screen novel compounds and are posited to model the positive
symptoms associated with schizophrenia, such as hyper-
dopaminergic or hypoglutamatergic states (Jones et al., 2011).
Furthermore these models have previously provided data on the
role of mGluR2 vs mGIuR3 that have pushed forward our under-
standing of these receptor systems (Moghaddam and Adams, 1998;
Cartmell et al., 2000; Jones et al., 2011). However, despite evidence
of efficacy in rodent models, clinical trials analyzing the antipsy-
chotic effects of mGluR2/3 compounds have so far shown limited
success (Patil et al., 2007; Kinon et al., 2011).

Group II mGlu receptors (mGluR2/3) have been linked to the
regulation of sleep and sleep disturbances, and changes in sleep-
wake architecture are observed in psychiatric disorders (Benca
et al., 1992; Breslau et al., 1996; Krystal et al.,, 2008). Gluta-
matergic neurotransmission is suggested to be critical in regulating
the arousal system (Feinberg and Campbell, 2008), with cortical
glutamate levels tightly regulated between wake and different
sleep states (Lopez-Rodriguez et al., 2007) and mGIluR2/3 activity
has been shown to regulate these levels (Lorrain et al., 2003).
Pharmacological studies have shown reduced REM sleep following
mGluR2/3 agonist treatment (Feinberg et al., 2002), an effect sug-
gested to be mGIuR2 dependent (Ahnaou et al.,, 2009). Both an
mGIluR2/3 antagonist and mGIuR2 negative allosteric modulator
(NAM) increased arousal and wakefulness (Feinberg et al., 2005;
Ahnaou et al., 2014), further supporting the role of mGIuR2/3 in
sleep-wake architecture. Recent work has also shown that
knockout of both mGluR2 and mGIuR3 in mice results in frag-
mented sleep and circadian changes (Pritchett et al., 2015).

The interplay of both excitatory and inhibitory neurotransmis-
sion and their fluctuating activity is critical in the generation of
network oscillations and are considered critical for normal CNS
function (Tamas et al., 2000; Buzsaki and Draguhn, 2004; Sohal
et al., 2009), with early work highlighting the importance of
mGluRs in this control (Whittington et al., 1995). Pharmacological
studies have suggested the involvement of mGluR2/3 in oscillatory
activity, with suppression of theta and gamma oscillations by
mGIluR2/3 agonism (Feinberg et al., 2002; Jones et al., 2012) and a
marked activation of the same oscillations following mGIuR2/3
antagonism (Feinberg et al., 2005; Ahnaou et al., 2014). Recent
work has indicated that the mGIluR2/3 agonist LY379268 and an
mGIuR2 positive allosteric modulator (PAM) TASP0443294 can
attenuate NMDA antagonist induced aberrant gamma oscillations
(Hiyoshi et al., 2014; Hikichi et al., 2015), suggesting the importance
of mGIuR2 in the effects. Nonetheless, far less is known of the
subtype selective role of mGIuR2 or mGIuR3 in other oscillation
bands, with these current data investigating the role of mGluR2 and
mGluR3 across multiple oscillation bands.

Despite their obvious potential as novel drug targets, progress to
the clinic with group II ligands has not yet been successful with
recent failures of the mixed mGluR2/3 agonist LY2140023 in Phase
Il and Phase III clinical trials for schizophrenia (Kinon et al., 2011;
Downing et al., 2014; Maksymetz et al., 2017). One of the challenges
is that orthosteric compounds currently available act at both
mGluR2 and mGIuR3 subtypes. Studies in knockout mice have been

useful in discerning the role of mGIluR2 and mGIuR3, although
some mixed results have been observed, possibly linked to their
genetic background and compensatory expression (Higgins et al.,
2004; Lyon et al. 2008, 2011; Lainiola et al., 2014; De Filippis
et al,, 2015). We recently reported on a novel Han Wistar rat
strain containing a nonsense mutation in the Grm2 gene that leads
to a loss of mGIuR2 expression (Wood et al., 2017). In this study, we
have used these Han Wistar rats to investigate the role of mGIuR2
and mGIuR3 receptors in psychostimulant-induced hyper-
locomotion, sleep-wake architecture and cortical network oscilla-
tions as measured by EEG. By further characterizing the role of
these receptors using the Han Wistar rats we aim to provide more
information on the subtype specific role of mGluR2 and mGIluR3.

2. Methods
2.1. Subjects

Male adult HSD Han Wistar rats (HSD:Wi, Harlan UK) and
Wistar (Crl:WI, Charles River, UK) were used for all experiments.
Both strains are outbred lines of Wistar origin but have been bred
separately for approximately 80 years (Wood et al., 2017). All
studies were conducted in accordance with the Animals (Scientific
Procedures) Act 1986 and University of Bristol and Eli Lilly UK
ethical review. Food (Laboratory chow, Purina, UK) and water were
available ad libitum for all studies.

2.2. Locomotor activity and rearing analysis

All rats were habituated to a wooden arena (90 cm x 100 cm)
with 50 cm high black walls and flooring for five 30 min sessions
before the study. On test days, after 10 min in the arena the rats
were pretreated with an intraperitoneal (i.p) injection of LY354740
10 mg/kg or distilled water and then after 30 min were adminis-
tered amphetamine (3 mg/kg), phencyclidine (PCP; 6 mg/kg) or
0.9% sterile saline i.p. followed by an hour of behavioural analysis.
The arena was cleaned between rats using 70% ethanol.

Locomotor activity was tracked by a video camera with Etho-
vision Software (Noldus, US) whilst rearing behaviours were scored
online by an individual blind to strain. Total distance moved (cm)
and total rearing behaviour during the testing period were calcu-
lated. This experiment used a within-subject Latin-square design
with treatments and strain counterbalanced across testing days,
with one week washout between testing sessions. Doses of
amphetamine, PCP and LY354740 were selected based on previ-
ously published studies (Castellani and Adams, 1981; Antoniou
et al., 1998; Cartmell et al., 1999).

2.3. EEG sleep/wake measures

2.3.1. Surgery

Chronic measurement of EEG and electromyogram (EMG) was
conducted using cranial implants placed under anaesthesia previ-
ously described by Seidel et al. (1995). The implant consisted of a
miniature connector (Omnetics, USA) connected to five stainless
steel screws positioned from bregma, with two frontal (+3.5 mm
AP, + 2 mm ML) and two occipital screws (—6.5 mm AP, +
5.2 mm ML) for EEG recording and one overlying the cerebellum to
be used as a ground. The implant housed two Teflon-coated
stainless steel wires placed under each nuchal trapezoid muscle
for EMG recordings. A miniature transmitter (Minimitter
PDT4000G, Philips Respironics, Bend, OR) to monitor body tem-
perature and locomotor activity (LMA) was placed in the abdomen
during the same surgery. Analgesics were used to minimize pain,
buprenorphine (0.05 mg/kg, SC) was administered pre-operatively,
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at the end of the surgery day and on the morning of the first post-
operative day, and Metacam (meloxicam, 0.15 mg/kg, PO) was
administered for 6 days after surgery. An antibiotic (Ceporex
(cefalexin) 20 mg/kg PO) was administered 24 h before and again
immediately before surgery, and for 7 days after surgery. Rats were
allowed to recover for at least 28 d prior to experimentation.

2.3.2. Apparatus and drug study protocol

Rats were individually housed within a specially modified pol-
ycarbonate cage with a flexible tether connecting the cranial
implant to a commutator (Hypnion, USA). Each cage had individ-
ually controlled temperature and humidity with a strictly
controlled 24 h light-dark cycle (12 h:12 h, 5am lights on). Food and
water were available ad libitum and consumption of each was
measured via the break of infrared beams positioned in front of the
food hopper and lixit. Drug treatments occurred 5 h after lights on
(Zeitgeber time 5; ZT5), and rats were left undisturbed for 48 h
before and after each treatment with at least 6 days between
treatments. Drug studies were conducted using a fully crossed over
split-plot design whereby each animal was randomly assigned to a
treatment sequence.

2.3.3. Data analysis

EEG signals, recorded as the differential between a contralateral
pair (right hemisphere frontal and left hemisphere occipital) of
skull screws, were amplified 10,000x, bandpass filtered at
1-300 Hz and digitized at 400 Hz [Grass Corp., Quincy, MA]. EMG
signals were amplified 20,000, bandpass filtered at 10—100 Hz
and integrated based on the root mean square (RMS). EEG and EMG
data were used in combination for on-line classification of arousal
states into NREM sleep, REM sleep, or wake in 10s epochs. Wake-
fulness and sleep states were determined using SCORE-2000™
(Van Gelder et al., 1991), with 10 s epoch of EEG/EMG data classified
as wake, NREM or REM sleep. Baseline wake, NREM sleep and REM
sleep were calculated for 24 h prior to dosing with post-treatment
values calculated for 19 h post treatment. Wake epochs were ana-
lysed across multiple band frequencies including delta (0.1—4 Hz),
theta (4—9Hz), beta (12—30Hz), gamma (30—80Hz) and high
frequency oscillation (130—160 Hz) band power during the main
treatment induced wake period. Quality control of the arousal state
scoring was facilitated by visual assessment of the raw EEG and
EMG signals by experts who were not involved in the data acqui-
sition phase and were blinded with respect to treatment group.

2.4. Drugs

Phencyclidine hydrochloride (Tocris, UK) and p-amphetamine
sulphate (Sigma, UK) were dissolved in sterile 0.9% saline. To test
the effects of the mutation on responses to prototypical mGIluR2/3
agonists, we tested LY354740 and LY379268 in locomotor tests and
sleep/wake studies respectively. Both compounds are mixed
mGIluR2/3 agonists and have previously been shown to have similar
effects in behavioural models and sleep studies (Moghaddam and
Adams, 1998; Cartmell et al., 1999; Woolley et al., 2008; Feinberg
et al., 2002; Ahnaou et al., 2009) and are used as reference com-
pounds in the two different establishments where the experiments
were undertaken. LY354740 (10 mg/kg i.p), LY3020371 (3 & 10 mg/
kg i.p.) and LY379268 (3 & 10 mg/kg p.o.) were provided by Eli Lilly
UK (Erl Wood, UK) and dissolved in sterile distilled water with pH
corrected to pH7.4 using small additions of 1 M NaOH or 1 M HCL.
All drugs were made up fresh each testing day and administered at
a final volume of 1 ml/kg.

2.5. Statistical analysis

Presence and absence of the cys407* mutation in the Han Wistar
and Wistar rats used in these experiments was determined using
previous methods (Wood et al., 2017).

Locomotor and rearing data were analysed using a mixed three-
way repeated measures ANOVA with pretreatment (LY354740 vs
vehicle) and treatment (Amphetamine vs vehicle, PCP vs vehicle) as
within subject factors and strain as the between subject factor. Post
hoc independent samples t-tests for between strain analyses or
pairwise comparisons of treatment effects were reported.

A fast Fourier transform of the EEG signal produced a measure of
the spectral power for each discreetly scored 10-s epoch and sub-
sequently binned into the frequency bands: delta (0.1-4 Hz), theta
(5—9 Hz), beta (12—30 Hz), gamma (30—80 Hz) and high frequency
oscillations (130—160 Hz). For spectral data, the effects of the two
compounds were evaluated over the first 7-h light phase following
treatment when the wake promoting effects were maximal, with
total accumulated power analysed over that period. Statistical an-
alyses of sleep and spectral parameters were performed using the
SAS (version 9.2, SAS Institute, Inc., Cary, NC) software package.

Analysis of the sleep dependent variables was conducted over
the post treatment period light phase (ZT5-ZT12) and dark phase
(ZT13- ZT24), with a mixed model analysis of covariance with
treatment and strain fixed effects, with contrasts used to test for
statistical significance. The change from vehicle for each dose
within each strain, and the treatment*strain interaction were
evaluated, with each subject acting as its own control (split-plot
crossover study design) and a Tukey's multiple comparison
adjustment applied. Similarly, the estimated difference in the effect
of LY treatments between strains were also analysed and adjusted.
Least squares mean differences and standard errors are reported.

For the accumulated spectral power data, the mixed model
procedure was used to perform an analysis of covariance with
treatment, strain and treatment*strain fixed effects. Comparisons
of individual treatments for each strain or between strains were
completed as appropriate with each subject acting as its own
control and a Tukey's multiple comparison adjustment. Each sub-
ject acted as its own control and a Tukey's multiple comparisons
adjustment applied. Least squares mean differences and standard
errors are reported.

Baseline characteristics (chambers, body weight, age, pre-
treatment distributions) were checked for homogeneity across
treatments, and factors of Body Weight, Age, Pre*Dose interaction,
as well as 2- and 3-way RunDate interactions were used as cova-
riates within the model for influence on final estimates.

All data are displayed as means + SEM, with all figures created
using GraphPad Prism 6 (GraphPad Software, US). All tests of sig-
nificance were performed with o = 0.05.

3. Results

3.1. Effects of mGIluR2/3 agonist LY354740 on amphetamine and
phencyclidine-induced locomotion and rearing behaviours

Administration of the psychostimulants amphetamine (AMP;
3 mg/kg) and PCP (6 mg/kg) increased locomotor activity (Fig. 1A
and B) and rearing behaviours (Fig. 1C and D) in both Han Wistar
(red) and Wistar rats (blue) with a main effect of treatment
observed (AMP, locomotor activity F114)=76.5, p <0.001, rearing
F(114)=109.6, p<0.001; PCP, locomotor activity F(114)=784,
p<0.001; rearing F(114)=196.0, p<0.001). Post-hoc pairwise
comparisons revealed an increase in both behaviours for both
strains and compounds (p < 0.01 for all comparisons).

LY354740 (10 mg/kg) pretreatment attenuated amphetamine-
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Fig. 1. Effects of mGluR2/3 agonist LY354740 (10 mg/kg) on amphetamine (3 mg/kg) and phencyclidine (6 mg/kg) induced behaviours in Wistar and Han Wistar rats.
Amphetamine (AMP) and phencyclidine (PCP) increased locomotor activity (A, B) and rearing behaviours (C, D) in both Wistar (blue/light blue) and Han Wistar (red/pink) rats.
Pretreatment with LY35740 (LY) significantly attenuated the behavioural responses to amphetamine and PCP in the Wistar rats (light blue) compared to vehicle pretreatment (Veh;
blue), which did not occur in the Han Wistar rats (pink, LY pretreatment; red, Veh pretreatment). Individual data bars indicate mean values + SEM for specific pretreatment/
treatment combinations (e.g. LY/AMP — LY354740 pretreatment followed by amphetamine treatment), with strain and pretreatment combinations separated by colour as described.
Significant post hoc comparisons are highlighted, with comparison to vehicle (*), between strains (+) or pretreatment (#) displayed, with significance values of p < 0.05*% p < 0.01**
and p < 0.001***, (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

and PCP-induced locomotor activity (Fig. 1A and B) in the Wistar
rats (light blue) but not Han Wistar rats (pink). Significant strain
and pretreatment effects were observed for the PCP locomotor data
(strain, F(114)=6.801, p=0.021; pretreatment, F14) = 25.3,
p < 0.001) in addition to multiple interactions (pretreatment®-
strain, F1,14) = 15.5, p = 0.001; pretreatment*treatment*strain,
F(1,14)=7.76, p=0.015). A trend towards a significant strain effect
was observed for amphetamine (F114)=3.65, p=0.077), whilst a
significant pretreatment effect and multiple interactions were
observed (pretreatment, F114) = 6.11, p = 0.027; pretreatment®-
strain, F1,14) = 16.5, p = 0.001; pretreatment*treatment*strain,
F(114)=15.5, p=0.001).

LY354740 attenuated both amphetamine and PCP-induced
rearing in the Wistar rats only (Fig. 1C and D). Significant main
strain and pretreatment effects were observed for both compounds
(AMP, strain, F114)=13.6, p=0.027; pretreatment, F(j14)=884,
p<0.001; PCP, strain, F114)=30.7, p<0.001; pretreatment,
F(1,14) = 34.2, p < 0.001), in addition to significant interactions for
both amphetamine and PCP (AMP, pretreatment®*strain
Fuiay = 982, p < 0.001, pretreatment*treatment*strain,
F(114) = 88.3, p < 0.001; PCP, pretreatment*strain F(114) = 30.0,

p < 0.001; pretreatment*treatment*strain F114)=34.7, p <0.001).

Post-hoc comparisons for both behaviours indicated the
reversal of amphetamine and PCP induced behaviours in the Wistar
rats only (AMP, locomotion, p = 0.002; rears, p < 0.001; PCP,
locomotion, p = 0.002; rears, p = 0.001), in addition to the strain
difference in LY354740 effects (AMP, locomotion p = 0.001; all
other analyses p < 0.001). No strain*treatment effects were
observed for either compound or behaviour, as similar levels of
behaviour were induced for both strains. Furthermore, LY354740
pretreatment alone did not significantly influence either behaviour
in either strain (p > 0.05).

3.2. Effects of mGIluR2/3 agonist LY379268 (3, 10 mg/kg) on sleep-
wake architecture and NREM delta activity

The mGIuR2/3 agonist LY379268 had divergent effects on sleep
in the Wistar and Han Wistar rats (Fig. 2). The most prominent
effect was the dose dependent loss of REM sleep in Wistar rats
across both the initial light phase (3 mg/kg, F157)=53.1,
p <0.001; 10 mg/kg, F(1161)=387.1, p<0.001) and the subsequent
dark phase (3mg/kg, F154)=219, p=0.003; 10mg/kg,
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F1,15.7)=58.9, p < 0.001). REM sleep loss was greatly reduced in the
Han Wistar rats, with significant REM inhibition only present
following the 10mg/kg dose during the initial light period
(Fa163) = 14.6, p = 0.015). These differences in response to
LY379268 were shown by significant strain effects and strain*-
treatment interactions at 3 mg/kg and 10 mg/kg during the light
phase (strain, 3 mg/kg, F268)=259, p=0.001, 10mg/kg,
F125.2) = 28.6, p < 0.001; strain*treatment F116,6)= 10.0, p = 0.006,
F(1,17)=10.1, p = 0.006; respectively) and 10 mg/kg during the dark
phase (strain, F1218) = 16.8, p = 0.009; strain*treatment,
F(1,16.2) =10.8, pP= 0.005).

LY379268 dose dependently increased wakefulness during the
light period in the Wistar rats only (3 mg/kg, F19)=15.5,
p =0.008; 10 mg/kg, F1,19) = 58.2, p < 0.001). In contrast no effects
were seen in the Han Wistar rats, resulting in significant strain
effects and strain*treatment interactions during the light phase for
both doses (strain, 3 mg/kg, F28)=11.5, p=0.028, 10 mg/kg,
F128) = 52.6, p < 0.001; strain*treatment 3 mg/kg, F(1213)=4.6,
p =0.043; 10 mg/kg, F211)=20.8, p <0.001). The increased wake-
fulness in the Wistar rats returned to control levels after 6 h. These
changed occurred with an increase in body temperature in the
Wistar rats at 10 mg/kg during the light phase (Supplementary
Fig. 1; F(1,16.6) = 24.1, p= 0.002), whilst both doses observed an in-
crease during the dark phase (3 mg/kg, F1161)=14.9, p=0.015;
10 mg/kg F(1159)=13.7, p=0.02). Minimal effects on body tem-
perature were seen in the Han Wistar rats. Furthermore, the
increased wakefulness did not significantly alter locomotor activity
(Supplementary Fig. 1).

In the control Wistar rats alone, 10 mg/kg LY379268 reduced
NREM sleep during the initial light phase (F120.9) = 35.3, p < 0.001),
whilst no effect was observed in the Han Wistar rats. These dif-
ferences were supported by a strain effect and strain*treatment
interaction at 10 mg/kg (F(1,28)=39.6, p<0.001; F(1227)=17.8,
p <0.001). No effects on NREM sleep were observed at 3 mg/kg for
either strain. These effects on wakefulness, NREM and REM sleep
occurred without changes to sleep bout number or sleep bout
duration (Supplementary Fig. 2).

A small increase in NREM delta was observed in the Wistar rats
during the light phase following 10 mg/kg LY379268 (F(111.9) = 22.7,
p = 0.005), whilst no significant effect was observed in the Han
Wistar rats. Nonetheless no significant strain effect or strain*-
treatment interaction was observed. No effects on NREM delta
power were observed for either rat strain following 3 mg/kg
LY379268 treatment.

3.3. Effects of mGIuR2/3 antagonist LY3020371 (3, 10 mg/kg) on
sleep-wake architecture and NREM delta activity

The mGIuR2/3 antagonist LY3020371 had clear wake promoting
effects in the Wistar rats at 10 mg/kg (Fig. 3; F(1,21)=91, p <0.001),
with almost complete sleep loss for 2 h. This treatment effect was
also present in the Han Wistar rats during the light phase
(Fi1220) = 13.1, p = 0.016) but was smaller and over a shorter
duration, with a significant strain effect and strain*treatment
interaction at 10 mg/kg (F(120.4)=29.5, p <0.001, F(1219)=13.6,
p =0.001 respectively). No rebound effects on wakefulness were
observed during the following dark phase in either strain.
Furthermore 3 mg/kg had no effect on any sleep parameter
throughout both light and dark phases.

This wake-promotion resulted in a large reduction in NREM

sleep in the Wistar rats during the light phase following 10 mg/kg
LY3020371 (F(1215)=102.8, p<0.001). A smaller reduction in
NREM sleep was observed in the Han Wistar rats (F(i216) = 15,
p = 0.009), with these strain differences highlighted by both sig-
nificant strain and strain*treatment effects (F(130.0)=24.1,
p <0.001, F(i219)=15.2, p<0.001 respectively). Minimal effects
were seen with 3 mg/kg LY379268 and despite the loss of NREM
sleep by 10 mg/kg, little rebound NREM sleep was observed during
the following dark phase in either strain. This wake promotion
during the light phase by 10 mg/kg LY3020371 resulted in increased
locomotor activity and resultant body temperature in the Wistar
rats alone (Supplementary Fig. 3; locomotor activity, F(1176)=38.2,
p <0.001; body temperature, F(116.6) = 28.5, p <0.001), with mini-
mal effects in the Han Wistar rats. Furthermore the increased
wakefulness resulted in reduced sleep bout number and bout
duration during the light phase for the Wistar rats alone
(Supplementary Fig. 4; bout number, F(1,19.4) = 14.5, p = 0.012; bout
duration, F122.4)=6.5, p=0.018).

During the light phase, significant reductions in REM sleep were
only observed in the Wistar rats following 10 mg/kg LY3020371
(Fe1,19.5)=39.2, p < 0.001). Han Wistar rats showed a small but non-
significant reduction throughout the light period, although total
accumulated REM sleep over the 6 h post treatment was signifi-
cantly reduced relative to the previous 24h baseline (Fig. 4;
p = 0.005). Nonetheless, these strain differences in response
throughout the light period were indicated by significant a strain
effect and strain*treatment interaction (F1296)=25.1, p <0.001,
F(1203) = 5.4, p = 0.031, respectively). Significant rebound REM
sleep was observed in both strains, with a far larger rebound in the
Wistar rats during the following dark phase compared to the Han
Wistar rats, as evidenced by significant strain*treatment interac-
tion (F(1,19.5)=4.4, p=0.049) as well as treatment effects for both
Wistar (F1,198)=46.1, p<0.001) and Han Wistar strains
(F1,18.7)=11.5, p = 0.03), however no strain effect was observed.

NREM delta activity was initially reduced in both rat strains,
however delta activity returned to vehicle levels 2 h post treatment.
No significant treatment effects were observed for the initial post
treatment light phase (Fig. 3) as well as no difference in accumu-
lated delta power (Fig. 4). During the subsequent dark phase, Han
Wistar rats had reduced NREM delta activity following 10 mg/kg
LY3020371 treatment (F119.7) = 25.1, p < 0.001), with no effect at
3 mg/kg in the Han Wistar rats or at either dose in the Wistar rats. A
significant strain effect and strain*treatment interaction was
observed for NREM delta during the dark phase (F(1276)=13.2,
p= 0.018; F(1,19.7) =51, pP= 0.035).

3.4. Analysis of wake EEG spectra following mGIuR2/3 agonist
LY379268 (3, 10 mg/kg) treatment

Treatment with LY379268 altered the wake EEG spectra of the
Wistar rats across multiple power bands during the post treatment
wakefulness period (first 7 h after treatment), with more limited
effects in the Han Wistar rats (Fig. 5).

LY379268 increased delta power (0.1—4 Hz) in the Wistar with
minimal effects in the Han Wistar rats, with a peak between 0.5 and
1 Hz for both doses. This increase in delta power showed a main
overall effect of treatment (F3 30) = 8.36, p = 0.0013), but not strain
or treatment*strain effects (F130)=3.86, p=0.0587, F(230) = 2.39,
p=0.1090 respectively). In individual doses, delta power was
increased at both 3 mg/kg and 10mg/kg in the Wistar rats

mean + SEM (Wistar, n = 6—7; Han Wistar, n = 5—6) with significant treatment effects for Wistar rats (*) and strain differences (#) indicated for the relevant time period. All
significance values used are p < 0.05% p < 0.01** and p < 0.001***, (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this

article.)
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(p=0.0135 p=0.0021 respectively) following adjustments for
multiple comparisons, whilst neither dose altered delta in the Han
Wistar rats.

Theta power (4.1-9 Hz) in the Wistar rats was reduced by
LY379268 with minimal effect in the Han Wistar rats. These effects
were supported by main treatment, strain and treatment*strain
effects for theta power (F30)=17.75, p<0.001, F(y30)=16.49,
p <0.001; Fr230)=16.96, p < 0.001 respectively), with reduced po-
wer in the Wistar rats at both doses (3 mg/kg, p = 0.0010; 10 mg/kg,
p <0.001), which was not observed in the Han Wistar rats. Strain
comparisons indicated a difference at the 10 mg/kg dose only for
theta power (p <0.001).

A dose dependent reduction in beta power (12—30Hz) was
observed in only the Wistar rats, with significant main effects and
interactions observed (treatment, F330)=30.16, p <0.001; strain,
F130) = 26.64, p < 0.001; treatment*strain, F30)=22.87,
p <0.001). The response to LY379268 was different between strains
at 3 mg/kg and 10 mg/kg (p = 0.0468, p < 0.001, respectively), with
Wistar rats reducing beta power at both doses (p < 0.001 for both
analyses), whilst neither dose of LY379268 altered beta power in
the Han Wistar rats.

In the higher frequency gamma band (30.1-80 Hz), LY379268
reduced spectral power in the Wistar rats but not Han Wistar rats,
with significant main effects and interactions (treatment,
F(2,30)=18.98, p <0.001; strain, F(130) = 20.15, p < 0.001; treat-
ment*strain, F30)=6.61, p=0.0042). Further analysis indicated
these effects resulted from both doses reducing gamma power
(3 mg/kg, p=0.0466 and 10 mg/kg, p < 0.001) with a strain differ-
ence observed at 10 mg/kg (p < 0.001). LY379268 had no effect on
the higher frequency HFO (130—160Hz) band in either of the
strains.

3.5. Analysis of wake EEG spectra following mGIluR2/3 antagonist
LY3020371 (3, 10 mg/kg) treatment

LY3020371 increased theta power in both the Wistar and Han
Wistar rats at the 10 mg/kg dose but not 3 mg/kg (Fig. 6). These
theta effects saw both main treatment and treatment*strain effects,
however no main strain effects were observed (treatment,
F232) = 25.86, p < 0.001; treatment*strain, F32)=5.40,
p=0.0096; strain, F»32)=3.46, p=0.072). Further comparisons
indicated LY3020371 increased theta power at 10 mg/kg in both the
Wistar rats (p<0.001) and Han Wistar rats (p <0.001), with a
significantly larger increase in the Wistar rats at this dose with a
strain difference observed (p = 0.0102).

Administration of LY3020371 resulted in sharp peaks in beta
power with main treatment effects observed but no strain effect or
treatment*strain interaction (treatment, Fp 32)=7.69, p =0.0019;
strain, F(132) = 0.84, p = 0.3657; treatment*strain, F;32)=0.47,
p=0.6303). Individual treatment comparison revealed that
LY3020371 dosed at 10 mg/kg increased beta power in the Wistar
rats only relative to vehicle controls (p = 0.0258).

A small increase in gamma band power was observed in both rat
strains, with overall main treatment effects (F32)=23.23,
p<0.001) but no significant strain effects (Fp32) = 0.02,
p = 09001) or treatment*strain interactions (F;32)=0.47,
p = 0.6314). Individual dose comparisons showed that gamma po-
wer increased in both the Han Wistar (p=0.0042) and Wistar
(p <0.0001) rats at the 10 mg/kg dose only, and that the increase
was equivalent in both strains (p = 0.98).

LY3020371 had no effect on delta power or in the higher fre-
quency HFO (130—160 Hz) band in either of the strains.

4. Discussion

These data provide evidence for distinct roles mediated by
mGIuR2 versus mGIuR3 in relation to the actions of mixed mGluR2/
3 agonists. The ability of these drugs to attenuate both amphet-
amine and PCP-induced hyperlocomotion and rearing behaviours
was lost in the mutant Han Wistar rat indicating a critical role for
the mGIuR2 subtype in these behavioural effects. Utilizing these
mutant rats, we were also able to provide new insights into the
possible roles that mGluR2 and mGIluR3 contribute to sleep-wake
architecture and EEG spectral data. The mGIluR2 subtype was
found to be responsible for the REM sleep suppression observed
following mGluR2/3 agonist LY379268 treatment. An mGIuR2
specific increase in wake delta power but reduced power in all
other frequency bands was also observed however, the presence of
areduced but not total loss of effect in the Han Wistar rats suggests
a contributory role for the mGIuR3 subtype.

The results for the mGluR2/3 antagonist LY3020371 (Witkin
et al.,, 2017) revealed increase in arousal in both rat strains with
increased wakefulness, and reduced NREM and REM sleep.
Although clearly an mGluR2 and mGIuR3 mediated response, the
results for the Han Wistar animals showed an attenuation sug-
gesting that the absence of mGIuR2 reduces the overall effect of the
antagonist. Despite the sleep loss, little rebound in NREM sleep was
observed for either strain. LY3020371 increased spectral power in
Wistar rats at lower frequencies (>10 Hz), with no significant ef-
fects in Han Wistar rats, whilst a specific peak in beta power was
observed in the Han Wistar strain only. At higher frequencies
(>30Hz), LY3020371 increased gamma and HFO band power in
both rat strains.

4.1. mGIuR2 plays a key role in the attenuation of psychostimulant-
induced hyperlocomotion observed with mixed mGIluR2/3 agonists

Despite the lack of mGIuR2 expression in the Han Wistar strain,
no baseline differences in the response to amphetamine or PCP
were observed (Fig. 1). These data suggest mGIuR2 is not involved
in a modulatory role under normal conditions despite their pro-
posed involvement in processes which may drive these behaviours
e.g. amphetamine induced dopamine release within the nucleus
accumbens (Millan et al., 1999) or PCP-induced release of glutamate
in the prefrontal cortex (PFC; Takahata and Moghaddam, 2003).
This is consistent with results in mGluR2~/~ mice (Fell et al., 2008;
Woolley et al., 2008) that also failed to show any differences in
sensitivity to the stimulant effects of either treatment. However,
mGIuR2~/~ mice show baseline locomotor differences in some
circumstances although these effects are not consistent and are
task- or arousal state-dependent (Morishima et al.,, 2005; De
Filippis et al., 2015). The reasons for these differences are not
clear as both animals lack a functional receptor. Species differences
may be a factor as compensatory mechanisms in knockout mice
may differ from those seen in rats containing a spontaneous mu-
tation, whilst there are also differences in the assays used to assess
locomotor activity. It is also important to consider that the reversal
of locomotor effects does not appear to be linked to changes in
arousal. We have seen an increase in wakefulness following treat-
ment with the mGIluR2/3 agonist LY379268 (Fig. 2). When

graphs. Each data point represents mean + SEM, with significant treatment effects for Wistar rats (*), Han Wistar rats (&) and strain differences (#) indicated for the relevant time
period. All significance values used are p < 0.05* p < 0.01** and p < 0.001***, (For interpretation of the references to colour in this figure legend, the reader is referred to the Web

version of this article.)
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Fig. 4. Histogram summary of mGluR2/3 receptor agonist LY379268 (10 mg/kg) and antagonist LY3020371 (10 mg/kg) effects on accumulated sleep variables and NREM delta
in Wistar and Han Wistar rats. Four variables that are reported for both compounds, wakefulness, NREM sleep, REM sleep and NREM delta activity. These data are the accumulated
amount of sleep or delta activity during the 7 h post treatment light period (0—6 h in Fig. 2 and 3) and are displayed as mean + SEM. Significant treatment effects (*) and strain

C.M. Wood et al. / Neuropharmacology 140 (2018) 246—259

LY3020371 (10mg/kg)

LY379268 (10mg/kg)
Wake

400-
[y #HH
Q0 wokk
QD = 300
gz
€ —_
2 5 2001
x
22 | = o
S 5 100 "
- O u
2e e
0 r . *
«Aéo évg S “YQ’
g & & L
) ¥ B
& &
NREM sleep
S 300 it
g kK
:g :néT —_ -
o 3 200- -
@ £ T e
»nE
=2 '
W £ 1001 e
zZe i
=
S0 ’ = 2
C\é\ o‘vg S (\v?-'
& \Q\, Q?Q Q‘b
N
REM sleep
= 60 i
s *
L
=
2 £ 40
% » 30-
=3
w 2 204 o
T o
g & 104 S
= o T - i
& @&
\é é\'é Q@o Q?o
W
N
NREM Delta
T 150
- -
g3 -
£e2 —
23
s 2 100 —= 7
=T e
a § e
s e
B 5 o
Z5
58 G
Rre g T - Lo
o
< 'o‘vg S v
Qi\é@ $\t':."' Q{bo X

Wake

400+

(23

o

o
I

1004

Total wake between

T
I

5 300+ i
:
Ep ok -
o8 -
o 3 2004
SE
w —
E _':'2 100
| b
x © 7
é ° //
g0 . Z
\\0 \Oq 409 &,@Q
» \s S G
2 3 d o
$\e é@@ DS &
REM sleep
= 607 fid
g = &
,.;.. ‘qtl)-, 504 *kk
3
af4l -
gE
% » 30
S
= =
& 2 204
e
F oo T 1
K \’bg 40‘\ \'DQ
A e
& @é@ ¥

NREM Delta

c @ 150+
o 3
¢ ¢
T
2@ —
2 100 5
S= 7
=g
8 E %
=5 /
w < 504
['4 [4 . /
E 3 /
S e /
Pe o . Z
© < &> & >
& & S &
& & & &
< &° Ay

differences (#) are indicated as appropriate using significance values of p < 0.05% p < 0.01** and p < 0.001***,



C.M. Wood et al. / Neuropharmacology 140 (2018) 246—259

LY379268

3mg/kg
130+ Delta Theta Beta Gamma
#
—~ 1204

Spectral power relative to baseline (%

255

HFO

80+
70 T T T i — T T T T T T T T 1
0 2 4 6 8 10 20 40 60 80 100 120 140 160 180 200
Frequency (Hz)

10mg/kg

130+ Delta Theta Beta Gamma HFO

it Hiti it

~ 120+

Spectral power relative to baseline (%
s
o

d

, ‘ .“ i Wiﬁ ‘M\ !{n‘ﬂ

70 T T T | T T T T T T T T 1
0 2 4 6 8 10 20 40 60 80 100 120 140 160 180 200
Frequency (Hz)
B Wistar Veh [ Han Veh . Wistar LY . Han LY

Fig. 5. Wake spectral power analysis of mGluR2/3 agonist LY379268 (3, 10 mg/kg) or vehicle administration at ZT5 in Wistar and Han Wistar rats. Spectral power data was
normalized relative to a 24 h baseline period, with data as represented as means for individual Hz with + shaded SEM values, with separate lines for Wistar and Han Wistar rats
following vehicle (dark grey/grey) or LY379268 (blue/red) treatment. Oscillation bands are labeled and separated by vertical dotted lines. Strain specific drug effects are indicated for
the Wistar (*) and Han Wistar rats (&), whilst significant strain differences in drug response are also indicated (#) using significance values of p < 0.05*, p < 0.01** and p < 0.001***.
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

administered alone LY354740 did not significantly alter locomotor
activity in either strain (Fig. 1) and LY379268 had no effect on ac-
tivity recorded during the sleep study (Supplementary Fig. 1). This
suggests that whilst mGluR2/3 agonists may alter the arousal of the
rats their effects on locomotor activity and rearing may relate more
specifically to those induced by psychotomimetics.

The reversal of both hyperlocomotion and rearing behaviours by

LY354740 in the Wistar rats agrees with the proposed
antipsychotic-like effects of mGluR2/3 agonists (Moghaddam and
Adams, 1998; Gewirtz and Marek, 2000; but also see Cartmell
et al., 1999). The lack of a reversal in the Han Wistar rats supports
mGIuR2 as the specific receptor for these effects, which is consis-
tent with previous data using subtype selective modulators and
knockout mice (Galici et al., 2005; Woolley et al., 2008).
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4.2. Specific role for mGIuR2 in agonist-induced loss of REM sleep
but both mGIuR2 and mGIuR3 contribute to wake promoting effects
following antagonist treatment

Normal sleep-wake architecture was observed in the Wistar and
Han Wistar rats following vehicle treatment, as no differences were
observed between strains (Figs. 2 and 3). This suggests that loss of
mGIuR2 does not directly affect normal sleep-wake functioning
similar to previous work with mGIuR2~/~ knockout mice (Ahnaou
et al., 2009).

The mixed mGluR2/3 agonist, LY379268 suppressed REM sleep
in the Wistar rats, with REM loss extending throughout the post

treatment light period at both doses tested (Fig. 2). This effect was
REM specific at 3 mg/kg, with little effect on wakefulness or NREM
sleep, whilst 10 mg/kg increased wakefulness and reduced NREM
sleep. These sleep effects were not observed in the Han Wistar rats
indicating that mGIuR2 is the specific subtype responsible for
mediating this effect. This is consistent with a previous report using
both knockout mice and mGluR2 PAM biphenyl-indanone A (BINA;
Ahnaou et al., 2009). Cortical glutamate is tightly regulated during
sleep states with low levels observed during wakefulness and
NREM sleep and high levels during REM (Lopez-Rodriguez et al.,
2007), therefore activation of mGIuR2 and suppression of cortical
glutamate may account for the almost total suppression of REM
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observed. The influence of other neurotransmitters that are regu-
lated by mGIuR2 and modulate sleep and arousal, such as acetyl-
choline, serotonin and GABA, may also be involved (Cartmell and
Schoepp, 2000; Kohlmeier et al., 2013) but further studies would
be needed. Interestingly activation of mGIluR2/3 did not appear to
fragment sleep as sleep bout duration and number of sleep bouts
were not affected by either dose of LY379268 (Supplementary
Fig. 2), suggesting whilst REM sleep is heavily suppressed the
Wistar rats normal physiological transitions between sleep and
wake remain relatively intact.

The novel, mixed mGIuR2/3 antagonist LY3020371 increased
arousal and wakefulness in both rat strains (Fig. 3), with larger
effects seen in the Wistar rats than Han Wistar rats. Initial effects
showed almost complete loss for 2—3 h post treatment which also
resulted in a reduction in sleep bout duration and number
(Supplementary Fig. 4) as well as a concomitant increase in loco-
motor activity and body temperature (Supplementary Fig. 3). These
data suggest that blockade of mGluR2 and/or mGIuR3 can increase
wakefulness but with a maximal effect following blockade of both
receptors. This agrees with previous reports as the mGluR2/3
antagonist LY341495 dramatically increased wakefulness (Feinberg
et al.,, 2005; Ahnaou et al., 2014), with a smaller wake promoting
effect by negative allosteric modulation of mGluR2 (Ahnaou et al.,
2014). This increased arousal may stem from mGluR2/3-mediated
effects on histaminergic neurons within the hypothalamus
(Okakura et al., 1992) as recent data suggested that mGluR2/3
blockade increases histamine release within this region promoting
arousal (Fell et al., 2015), which would also result in the fragmen-
tation of sleep that occurs due to large scale blockade of mGIluR2/3
by 10 mg/kg LY3020371 (Supplementary Fig. 4). Furthermore, our
data indicate that constitutive mGIuR3 activity present in the Han
Wistar rats may be maintaining sleep-wake functioning, as mGluR3
blockade alone results in increased arousal (Fig. 3).

The sleep data from both the agonist and antagonist indicate
that there is an optimal activity at mGluR2 and mGIuR3 that
facilitate normal sleep-wake architecture. Disruptions of this pro-
cess can result in changes to this architecture but with differing
effects, as widespread mGIuR2 activation, the predominant effector
for LY379268 (Fig. 2), drives the loss of REM sleep and at higher
doses increases wakefulness, whilst inactivation of natural mGIluR2
and mGIuR3 tone by LY3020371 (Fig. 3), results in a dramatic rise in
arousal and wakefulness resulting in an overall non-specific sleep
loss.

As sleep is a homeostatic mechanism, sleep restriction through
pharmacological or paradoxical methods results in increased sleep
pressure and is followed by a period of hypersomnolence during
the following wake/active period. These effects are classically seen
with wake promoting agents such as methamphetamine (Edgar
and Seidel, 1997), however, the wake promoting effects of
LY3020371 were not followed by a period of hypersomnolence in
either rat strain, although an increase in REM sleep was observed
during the dark phase (Fig. 3). A similar lack of a hypersomnolence
period was observed with dosing at two hours into the inactive
phase (ZT-2; Ahnaou et al., 2014) suggesting mGluR2 or mGIuR2/3
blockade can induce a specific wake-promoting effect, without the
NREM rebound.

4.3. The role of mGIuR2 and mGIuR3 in oscillations <30 Hz (delta,
theta, beta)

LY379268 increased wake delta power in the Wistar but not Han
Wistar rats (Figs. 5 and 6; 0—4 Hz) suggesting that activation of
mGIluR2 increases cortical delta oscillations. Recent data supports
this mGIluR2-mediated balance of delta activity, as an mGluR2 PAM
increased (Siok et al., 2012) and mGIuR2 NAM decreased (Ahnaou

et al., 2014) delta power. Increases in delta oscillations may be a
secondary response to drug-induced wakefulness, however the
lack of a delta effect in the Han Wistar rats, despite increased
wakefulness, does not support that hypothesis.

Modulation of mGluR2 and mGIuR3 influenced theta oscilla-
tions as LY379268 decreased theta (Fig. 5) in an mGluR2 dependent
manner and conversely LY3020371 increased theta power (Fig. 6) in
both rat strains, suggesting involvement of both mGluR2 and
mGIluR3 in the control of theta oscillations. Similar effects on theta
have also been reported previously with group Il pharmacology and
support the involvement of mGluR2 (Feinberg et al. 2002, 2005;
Siok et al., 2012; Ahnaou et al., 2014). As theta oscillations are
suggested to be important in cognitive functioning (Basar et al.,
2001; Jones and Wilson, 2005), the effects on theta power in
these data may explain the suggested cognitive deficits observed in
some studies with mGIuR2/3 agonists in normal animals (Higgins
et al., 2004; Schlumberger et al., 2009). Furthermore, mGluR2/3
antagonists and mGluR2 NAMs have been shown to improve per-
formance in behavioural tasks (Higgins et al., 2004; Goeldner et al.,
2013).

The decrease in beta oscillation (12—30Hz) induced by
LY379268 was specific to mGluR2 activation as no effects were
observed in the Han Wistar strain (Fig. 5), however it can clearly be
seen that this beta decrease is part of the adjoining gamma
response therefore may not be beta specific. A sharp increase in
beta oscillations was seen in both rat strains following treatment
with LY3020371 however a significant effect was only seen in the
Wistar rats at 10 mg/kg. Beta oscillations have been associated with
locomotor activity (Engel and Fries, 2010; Jenkinson and Brown,
2011), however the peaks in beta oscillations observed were asso-
ciated with minimal locomotor effect in the Han Wistar rats
compared to a dramatic increase in the Wistar rats (Supplementary
Fig. 1).

4.4. Constitutive activity of mGIuR2/3 in gamma and HFO bands
with mGIuR2 specific suppression by LY379268

Aberrant theta and gamma oscillations have been observed in
psychosis-like states (Lisman and Buzsaki, 2008), with recent data
showing that NMDA antagonist induced gamma oscillations can be
reversed by mGluR2/3 activation (Hiyoshi et al., 2014; Hikichi et al.,
2015). In this study, the mixed mGluR2/3 agonist, LY379268 sup-
pressed gamma and theta oscillations, an effect that was attenuated
in the Han Wistar strain indicating a strong mGluR2 specific effect.

High frequency oscillations (130—160 Hz) occur in multiple re-
gions including the cortex, hippocampus and nucleus accumbens
(Buzsaki et al., 1983; Jones and Barth, 1999; Hunt et al., 2006) and
are induced through psychotomimetic treatment (Hunt et al., 2006;
Olszewski et al., 2013). Nonetheless, their physiological role is not
fully understood. These current data suggest that modulation of
mGIuR2 or mGIuR3 alone do not result in changes to HFO power
(Figs. 5—6).

4.5. Utility and limitations of Han Wistar and Wistar comparison

The Han Wistar rat strain has proved to be a useful model for
studying mGluR2 versus mGluR3 receptor function in the absence
of highly selective orthosteric ligands. The results obtained broadly
agree with data for the knockout mouse model and also provide
new insights through the recording of EEG data. Overall the mu-
tation in the mGIuR2 and resulting lack of functional protein
expression did not result in baseline differences throughout any of
these experiments. This may be a result of compensatory mecha-
nisms that the Han Wistar rats have developed however they may
also suggest that mGIuR2 does not contribute a major role to
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neuromodulation under normal conditions. The lack of baseline
differences suggests functional redundancy between mGIuR2 and
mGluR3, an effect suggested previously when comparing both
single mGluR2~/~ and mGIuR3~/~ knockout mice to double
mGluR2/3‘/‘ mice in behavioural tasks (De Filippis et al., 2015).
However, the differences in response to mGluR2/3 agonists and
antagonists in these current data have revealed individual roles for
each receptor.

Having a rat model to study mGluR2 versus mGluR3 functions is
particularly useful for behavioural research where the rat is the
more commonly used species. The larger size of the animal also
makes the direct recording of brain function more feasible. How-
ever, the Han Wistar line was split from the non-Han Wistar more
than 80 years ago (Wood et al., 2017). This will have resulted in
wider genetic divergence between these rat strains than just the
cys407* mutation within the Grm2 gene (Wood et al., 2017),
meaning effects observed may also be influenced by other non-
mGIuR2 related differences. It is important to identify these ca-
veats in this data given sleep processes are of a polygenic nature,
with this comparison conducted in two different outbred lines,
nonetheless, this spontaneous mutation within the Han Wistar rats
has provided a novel avenue of analyzing the role of mGluR2 and
mGIuR3 in behaviour and processes such as sleep. In order to
address this, heterozygote parents from the Han Wistar line could
be used to provide litter-matched controls.

5. Conclusion

These data illustrate the significant contribution of mGIuR2 in
the antipsychotic-like, sleep and EEG effects of drugs acting at
group II mGluRs through the use of Han Wistar rats that lack
mGluR2 expression. We provide evidence for a role of mGIuR3
activity in sleep-wake architecture and network oscillations using
the novel mGIluR2/3 antagonist LY3020371, with theta and gamma
oscillations influenced by manipulations of mGluR2 or mGIuR3
alone. Further distinguishing the subtype specific roles of these
receptors will be critical for capitalizing on the vast potential of
group II mGIuR drugs, with the Han Wistar rats a novel tool for
these investigations.
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