477 research outputs found

    Timing of Mycobacterium tuberculosis exposure explains variation in BCG effectiveness: A systematic review and meta-analysis

    Get PDF
    Rationale The heterogeneity in efficacy observed in studies of BCG vaccination is not fully explained by currently accepted hypotheses, such as latitudinal gradient in non-tuberculous mycobacteria exposure. Methods We updated previous systematic reviews of the effectiveness of BCG vaccination to 31 December 2020. We employed an identical search strategy and inclusion/exclusion criteria to these earlier reviews, but reclassified several studies, developed an alternative classification system and considered study demography, diagnostic approach and tuberculosis (TB)-related epidemiological context. Main results Of 21 included trials, those recruiting neonates and children aged under 5 were consistent in demonstrating considerable protection against TB for several years. Trials in high-burden settings with shorter follow-up also showed considerable protection, as did most trials in settings of declining burden with longer follow-up. However, the few trials performed in high-burden settings with longer follow-up showed no protection, sometimes with higher case rates in the vaccinated than the controls in the later follow-up period. Conclusions The most plausible explanatory hypothesis for these results is that BCG protects against TB that results from exposure shortly after vaccination. However, we found no evidence of protection when exposure occurs later from vaccination, which would be of greater importance in trials in high-burden settings with longer follow-up. In settings of declining burden, most exposure occurs shortly following vaccination and the sustained protection observed for many years thereafter represents continued protection against this early exposure. By contrast, in settings of continued intense transmission, initial protection subsequently declines with repeated exposure to Mycobacterium tuberculosis or other pathogens

    The impact of injecting networks on hepatitis C transmission and treatment in people who inject drugs

    Get PDF
    With the development of new highly efficacious direct acting antiviral treatments (DAAs) for hepatitis C (HCV), the concept of treatment as prevention is gaining credence. To date the majority of mathematical models assume perfect mixing with injectors having equal contact with all other injectors. This paper explores how using a networks based approach to treat people who inject drugs (PWID) with DAAs affects HCV prevalence. Method: Using observational data we parameterized an Exponential Random Graph Model containing 524 nodes. We simulated transmission of HCV through this network using a discrete time, stochastic transmission model. The effect of five treatment strategies on the prevalence of HCV was investigated; two of these strategies were 1) treat randomly selected nodes and 2) “treat your friends” where an individual is chosen at random for treatment and all their infected neighbours are treated. Results: As treatment coverage increases, HCV prevalence at 10 years reduces for both the high efficacy and low efficacy treatment. Within each set of parameters, the “treat your friends” strategy performed better than the random strategy being most marked for higher efficacy treatment. For example over 10 years of treating 25 per 1000 PWID, the prevalence drops from 50% to 40% for the random strategy, and to 33% for the “treat your friends” strategy (6.5% difference, 95% CI 5.1 – 8.1%). Discussion: “Treat your friends” is a feasible means of utilising network strategies to improve treatment efficiency. In an era of highly efficacious and highly tolerable treatment such an approach will benefit not just the individual but the community more broadly by reducing the prevalence of HCV amongst PWID

    Studies Needed to Address Public Health Challenges of the 2009 H1N1 Influenza Pandemic: Insights from Modeling

    Get PDF
    In light of the 2009 influenza pandemic and potential future pandemics, Maria Van Kerkhove and colleagues anticipate six public health challenges and the data needed to support sound public health decision making.The authors acknowledge support from the Bill & Melinda Gates Foundation (MDVK, CF, NMF); Royal Society (CF); Medical Research Council (MDVK, CF, PJW, NMF); EU FP7 programme (NMF); UK Health Protection Agency (PJW); US National Institutes of Health Models of Infectious Disease Agent Study program through cooperative agreement 1U54GM088588 (ML); NIH Director's Pioneer Award, DP1-OD000490-01 (DS); EU FP7 grant EMPERIE 223498 (DS); the Wellcome Trust (DS); 3R01TW008246-01S1 from Fogerty International Center and RAPIDD program from Fogerty International Center with the Science & Technology Directorate, Department of Homeland Security (SR); and the Institut de Veille Sanitaire Sanitaire funded by the French Ministry of Health (J-CD). The funders played no role in the decision to submit the article or in its preparation

    Methods used in the spatial analysis of tuberculosis epidemiology: a systematic review

    Get PDF
    Background: Tuberculosis (TB) transmission often occurs within a household or community, leading to heterogeneous spatial patterns. However, apparent spatial clustering of TB could reflect ongoing transmission or co-location of risk factors and can vary considerably depending on the type of data available, the analysis methods employed and the dynamics of the underlying population. Thus, we aimed to review methodological approaches used in the spatial analysis of TB burden. Methods: We conducted a systematic literature search of spatial studies of TB published in English using Medline, Embase, PsycInfo, Scopus and Web of Science databases with no date restriction from inception to 15 February 2017. The protocol for this systematic review was prospectively registered with PROSPERO (CRD42016036655). Results: We identified 168 eligible studies with spatial methods used to describe the spatial distribution (n = 154), spatial clusters (n = 73), predictors of spatial patterns (n = 64), the role of congregate settings (n = 3) and the household (n = 2) on TB transmission. Molecular techniques combined with geospatial methods were used by 25 studies to compare the role of transmission to reactivation as a driver of TB spatial distribution, finding that geospatial hotspots are not necessarily areas of recent transmission. Almost all studies used notification data for spatial analysis (161 of 168), although none accounted for undetected cases. The most common data visualisation technique was notification rate mapping, and the use of smoothing techniques was uncommon. Spatial clusters were identified using a range of methods, with the most commonly employed being Kulldorff's spatial scan statistic followed by local Moran's I and Getis and Ord's local Gi(d) tests. In the 11 papers that compared two such methods using a single dataset, the clustering patterns identified were often inconsistent. Classical regression models that did not account for spatial dependence were commonly used to predict spatial TB risk. In all included studies, TB showed a heterogeneous spatial pattern at each geographic resolution level examined. Conclusions: A range of spatial analysis methodologies has been employed in divergent contexts, with all studies demonstrating significant heterogeneity in spatial TB distribution. Future studies are needed to define the optimal method for each context and should account for unreported cases when using notification data where possible. Future studies combining genotypic and geospatial techniques with epidemiologically linked cases have the potential to provide further insights and improve TB control

    Hepatitis C transmission and treatment as prevention - The role of the injecting network

    Get PDF
    Background: The hepatitis C virus (HCV) epidemic is a major health issue; in most developed countries it is driven by people who inject drugs (PWID). Injecting networks powerfully influence HCV transmission. In this paper we provide an overview of 10 years of research into injecting networks and HCV, culminating in a network-based approach to provision of direct-acting antiviral therapy. Methods: Between 2005 and 2010 we followed a cohort of 413 PWID, measuring HCV incidence, prevalence and injecting risk, including network-related factors. We developed an individual-based HCV transmission model, using it to simulate the spread of HCV through the empirical social network of PWID. In addition, we created an empirically grounded network model of injecting relationships using exponential random graph models (ERGMs), allowing simulation of realistic networks for investigating HCV treatment and intervention strategies. Our empirical work and modelling underpins the TAP Study, which is examining the feasibility of community-based treatment of PWID with DAAs. Results: We observed incidence rates of HCV primary infection and reinfection of 12.8 per 100 person-years (PY) (95%CI: 7.7-20.0) and 28.8 per 100 PY (95%CI: 15.0-55.4), respectively, and determined that HCV transmission clusters correlated with reported injecting relationships. Transmission modelling showed that the empirical network provided some protective effect, slowing HCV transmission compared to a fully connected, homogenous PWID population. Our ERGMs revealed that treating PWID and all their contacts was the most effective strategy and targeting treatment to infected PWID with the most contacts the least effective. Conclusion: Networks-based approaches greatly increase understanding of HCV transmission and will inform the implementation of treatment as prevention using DAAs

    Strategic investment in tuberculosis control in the Republic of Bulgaria

    Get PDF
    As Bulgaria transitions away from Global Fund grant, robust estimates of the comparative impact of the various response strategies under consideration are needed to ensure sustained effectiveness of the tuberculosis (TB) programme. We tailored an established mathematical model for TB control to the epidemic in Bulgaria to project the likely outcomes of seven intervention scenarios. Under existing programmatic conditions projected forward, the country's targets for achieving TB elimination in the coming decades will not be achieved. No interventions under consideration were predicted to accelerate the baseline projected reduction in epidemiological indicators significantly. Discontinuation of the 'Open Doors' program and activities of non-governmental organisations would result in a marked exacerbation of the epidemic (increasing incidence in 2035 by 6-8% relative to baseline conditions projected forward). Changing to a short course regimen for multidrug-resistant TB (MDR-TB) would substantially decrease MDR-TB mortality (by 21.6% in 2035 relative to baseline conditions projected forward). Changing to ambulatory care for eligible patients would not affect TB burden but would be markedly cost-saving. In conclusion, Bulgaria faces important challenges in transitioning to a primarily domestically-financed TB programme. The country should consider maintaining currently effective programs and shifting towards ambulatory care to ensure program sustainability

    Increasing the frequency of hand washing by healthcare workers does not lead to commensurate reductions in staphylococcal infection in a hospital ward

    Get PDF
    Hand hygiene is generally considered to be the most important measure that can be applied to prevent the spread of healthcare-associated infection (HAI). Continuous emphasis on this intervention has lead to the widespread opinion that HAI rates can be greatly reduced by increased hand hygiene compliance alone. However, this assumes that the effectiveness of hand hygiene is not constrained by other factors and that improved compliance in excess of a given level, in itself, will result in a commensurate reduction in the incidence of HAI. However, several researchers have found the law of diminishing returns to apply to hand hygiene, with the greatest benefits occurring in the first 20% or so of compliance, and others have demonstrated that poor cohorting of nursing staff profoundly influences the effectiveness of hand hygiene measures. Collectively, these findings raise intriguing questions about the extent to which increasing compliance alone can further reduce rates of HAI. In order to investigate these issues further, we constructed a deterministic Ross-Macdonald model and applied it to a hypothetical general medical ward. In this model the transmission of staphylococcal infection was assumed to occur after contact with the transiently colonized hands of HCWs, who, in turn, acquire contamination only by touching colonized patients. The aim of the study was to evaluate the impact of imperfect hand cleansing on the transmission of staphylococcal infection and to identify, whether there is a limit, above which further hand hygiene compliance is unlikely to be of benefit. The model demonstrated that if transmission is solely via the hands of HCWs, it should, under most circumstances, be possible to prevent outbreaks of staphylococcal infection from occurring at a hand cleansing frequencies <50%, even with imperfect hand hygiene. The analysis also indicated that the relationship between hand cleansing efficacy and frequency is not linear - as efficacy decreases, so the hand cleansing frequency required to ensure R0<1 increases disproportionately. Although our study confirmed hand hygiene to be an effective control measure, it demonstrated that the law of diminishing returns applies, with the greatest benefit derived from the first 20% or so of compliance. Indeed, our analysis suggests that there is little benefit to be accrued from very high levels of hand cleansing and that in most situations compliance >40% should be enough to prevent outbreaks of staphylococcal infection occurring, if transmission is solely via the hands of HCWs. Furthermore we identified a non-linear relationship between hand cleansing efficacy and frequency, suggesting that it is important to maximise the efficacy of the hand cleansing process

    Modelling the effect of short-course multidrug-resistant tuberculosis treatment in Karakalpakstan, Uzbekistan

    Get PDF
    Background: Multidrug-resistant tuberculosis (MDR-TB) is a major threat to global TB control. MDR-TB treatment regimens typically have a high pill burden, last 20 months or more and often lead to unsatisfactory outcomes. A 9-11 month regimen with seven antibiotics has shown high success rates among selected MDR-TB patients in different settings and is conditionally recommended by the World Health Organization. Methods: We construct a transmission-dynamic model of TB to estimate the likely impact of a shorter MDR-TB regimen when applied in a low HIV prevalence region of Uzbekistan (Karakalpakstan) with high rates of drug resistance, good access to diagnostics and a well-established community-based MDR-TB treatment programme providing treatment to around 400 patients. The model incorporates acquisition of additional drug resistance and incorrect regimen assignment. It is calibrated to local epidemiology and used to compare the impact of shorter treatment against four alternative programmatic interventions. Results: Based on empirical outcomes among MDR-TB patients and assuming no improvement in treatment success rates, the shorter regimen reduced MDR-TB incidence from 15.2 to 9.7 cases per 100,000 population per year and MDR-TB mortality from 3.0 to 1.7 deaths per 100,000 per year, achieving comparable or greater gains than the alternative interventions. No significant increase in the burden of higher levels of resistance was predicted. Effects are probably conservative given that the regimen is likely to improve success rates. Conclusions: In addition to benefits to individual patients, we find that shorter MDR-TB treatment regimens also have the potential to reduce transmission of resistant strains. These findings are in the epidemiological setting of treatment availability being an important bottleneck due to high numbers of patients being eligible for treatment, and may differ in other contexts. The high proportion of MDR-TB with additional antibiotic resistance simulated was not exacerbated by programmatic responses and greater gains may be possible in contexts where the regimen is more widely applicable
    corecore