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Abstract –  

Introduction: With the development of new highly efficacious direct acting antiviral 

treatments (DAAs) for hepatitis C (HCV), the concept of treatment as prevention is gaining 

credence.  To date the majority of mathematical models assume perfect mixing with injectors 

having equal contact with all other injectors.  This paper explores how using a networks 

based approach to treat people who inject drugs (PWID) with DAAs affects HCV prevalence. 

Method: Using observational data we parameterized an Exponential Random Graph Model 

containing 524 nodes.  We simulated transmission of HCV through this network using a 

discrete time, stochastic transmission model.  The effect of five treatment strategies on the 

prevalence of HCV was investigated; two of these strategies were 1) treat randomly selected 

nodes and 2) “treat your friends” where an individual is chosen at random for treatment and 

all their infected neighbours are treated.  

Results: As treatment coverage increases, HCV prevalence at 10 years reduces for both the 

high efficacy and low efficacy treatment.  Within each set of parameters, the “treat your 

friends” strategy performed better than the random strategy being most marked for higher 

efficacy treatment.  For example over 10 years of treating 25 per 1000 PWID, the prevalence 

drops from 50% to 40% for the random strategy, and to 33% for the “treat your friends” 

strategy (6.5% difference, 95% CI 5.1 - 8.1%).  

Discussion: “Treat your friends” is a feasible means of utilising network strategies to 

improve treatment efficiency.  In an era of highly efficacious and highly tolerable treatment 

such an approach will benefit not just the individual but the community more broadly by 

reducing the prevalence of HCV amongst PWID. 
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Introduction 

Hepatitis C (HCV) is a major global health problem affecting approximately 3% of the 

world’s population. [1] Its transmission is mediated by interrelated behavioural and biological 

factors as well as social and structural issues;[2] these include injecting behaviours such as 

sharing needles and syringes,[3-6] the shared use of drug preparation equipment,[3, 4, 6-8] 

and the duration and frequency of injecting.[8-11] Immunovirological factors include the 

HCV genotype and viral load[12, 13], and independent variables such as gender[14, 15] and 

genetic polymorphisms.[16, 17] Whilst these risk factors are important in HCV transmission, 

it is increasingly recognised that contact networks also affect the transmission dynamics of 

HCV and other viruses.[18] While considerable research exists on the role of social networks 

(primarily sexual contact networks) in HIV transmission,[19] few such studies have 

addressed HCV.[20-23]   

With the advent of new HCV treatments, the concept of treatment as prevention is gaining 

credence.[24] Modelling based on the standard treatment of pegylated interferon and ribavirin 

(Peg/Riba) predicted that treating 25 per 1000 PWID could reduce HCV prevalence by 50% 

within 30 years.[25-27] With the introduction of new highly efficacious HCV therapies,[28] 

HCV prevalence can be reduced by as much as 70% at 30 years if 25/1000 PWID are treated 

annually.[25, 29] 

Mathematical modelling enables projections of the HCV epidemic [29-31] and assessment of 

the benefits of therapeutic and behavioural interventions.[26, 27, 29, 32, 33]. To date the vast 

majority of mathematical models assume perfect mixing: injectors have equal contact with all 

other injectors in the population.[7, 31, 33-36] These models are typically deterministic, 

using differential equations to model quantities such as the total numbers of susceptible and 

infected individuals in “compartments”.[33-35] Even those models that use stochastic 

simulations [7, 30, 36] lack empirically-grounded, disease-relevant contact patterns 

(networks), so fail to capture individual heterogeneity. An exception to this modelling is 

work by Hutchinson et al, who used a basic non-mixing approach to randomly assign and 

remove needle-sharing partners to create a simple random network which varies from year to 

year.[30] In general, mathematical modelling of the HCV epidemic could be enhanced by 

incorporating social network concepts. 

In order to examine the role of social networks in HCV transmission, we recruited a cohort of 

PWID (the Networks Cohort) in Melbourne, Australia between 2005 and 2007. We collected 
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injecting risk behaviour information and blood samples for HCV testing, as well as detailed 

information about the participants’ social networks.[37, 38] The Networks Cohort was 

followed for five years, allowing us to estimate HCV incidence (both primary and 

reinfection) and HCV clearance.[37] This paper briefly describes an individual-based 

stochastic model of HCV transmission based on an empirical social network of PWID from 

the Networks 2 Cohort.[39] The observed network has now been parameterised using an 

exponential random graph model (ERGM), allowing the formulation of a more general set of 

models.[40] Using this model we have recently demonstrated that the number of contacts and 

the frequency of injecting impact on the time to primary infection. [41] As well, treating 

PWIDs and all their contacts in the network was most effective in reducing the incidence 

rates of re-infection and combined infection [41]. Building on that work, this paper explores 

how treating increased numbers of PWID with new highly efficacious HCV treatment affects 

HCV prevalence and how that effect is modulated by the injecting network. 

METHODS 

Observed network 

Between 2005 and 2007, PWID who injected at least once in the previous six months were 

recruited from three major street drug markets located across metropolitan Melbourne using 

modified snowball sampling; our field team asked participants to introduce up to five people 

with whom they injected but not necessarily shared injecting equipment.[38, 42] Importantly, 

although the data collection used network-based methods, the entire network was not 

sampled. Rather, the network can be conceptualised as a snowball sample, consisting of seed 

nodes (wave 0) and nodes in waves 1 and 2. This observed network included 258 people. 

Simulated networks  

After taking into consideration the snowball sampling method, the observed network –which 

has 258 nodes is likely to represent a group of approximately 524 individuals.[40] We 

previously developed an ERGM for the this network, which included network characteristics 

and personal attributes.[40] Network parameters estimated include edges, singletons, and the 

newer alternating k-star, alternating k-triangle and alternating k-2-path parameters of Snijders 

et al.[43] that are often used to achieve parsimonious model specifications.  

 

In ERGM networks the parameters represent the propensity of the corresponding 

configuration to appear in the network. Negative numbers represent a propensity for the 
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configuration to not appear in the network. For example, as the observed graph was stripped 

of isolates (who are not of interest from the perspective of modelling transmission on a 

network) the parameter for isolates is strongly negative.  

Additional estimates from Rolls et al.[40] used in the current study were the size of each drug 

using network that this snowball sample represents (which was argued to be 524 individuals) 

and the observed fraction of the population by location (three sites were used in the study), 

age groups (below and above 25 years) and gender.  

New networks with the same characteristics as the original network were simulated using 

Pnet, which generates ERGM networks using a Metropolis-Hastings MCMC method.[44] A 

fixed number of nodes (n=524) was used, and nodes were randomly assigned attributes 

according to the probabilities given in Table 1. Networks were generated by accepting or 

removing randomly proposed edges based on the ERGM specifications provided in Table 2.   

The ERGM parameters are a valid representation of a group of PWID when simulated with 

524 nodes at time but they cannot validly be used to simulate different sized groups at one 

time. The number of PWID in Melbourne and other large Australian cities is much larger 

than 524, estimated to be in the order of 10,000. We wished to examine stochastic effects and 

impact of treatment on a population at this scale and estimate treatment effects including 

stochastic variability on a scale comparable to the number of PWID in Melbourne. We 

therefore evaluated networks comprised of 20 sub-networks, each of size 524, in order to 

both maintain the validity of the ERGM parameters and to estimate the effects of our 

intervention strategies on a city-wide scale,  

We generated 100 sub-networks, each of size 524, using a fixed node number and Pnet’s 

standard Metropolis-Hastings MCMC.[44] To do this, we discarded the first 60 million sub-

networks as burn-in, and for the next 100 million thinned by selecting one in every one 

million sub-networks produced. Once these sub-networks were constructed, networks were 

analysed based on results of a random selection of 20 such sub-networks, creating networks 

of size 10,480. One hundred networks each of 20 sub-networks make up the final structure 

for analysis.  

 

Transmission model 

Our disease transmission model, depicting various stages of hepatitis C infectiousness, is a 

simplified two-compartment model adapted from those described previously.[25-27] People 
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are classified as susceptible or infectious. Susceptible people include those who have never 

been infected, have cleared infection, or had successful treatment. The infectious 

compartment includes the untreated infected people, those currently receiving treatment 

(throughout the course, regardless of treatment type or duration) and those who have failed 

treatment. In this study we assume no immunity is provided by prior infection and all those 

treated or who clear infection are infected at the same rate as those who have never been 

infected. Similarly we assume all those who fail treatment are as infectious as those who have 

never received treatment. The numbers of people susceptible and infected at time t are S(t) 

and I(t), respectively. 

A discrete time, stochastic, individual-based network model was used to simulate 

transmission of hepatitis C across the network. Parameters governing the transitions between 

susceptible and infectious compartments are given, with their meanings and values, in Table 

3. A departure from previous work is that infection is assumed to arise from within the 

network, without external importation. 

For each simulation month, susceptible nodes were examined; if they were connected to 

infected nodes, a hazard of transmission was calculated and a transmission event is 

determined stochastically, using the following probability: For individual k 

Pr������ → 
��� + ∆��
 = �1 − ������ ∑ ���∆� + ��∆�� 

where β is the annual transmission rate for a connected discordant pair, ∑In is the total 

number of infectious neighbours of k, π is the proportion of people who clear infection, and 

��∆�� represents small order probabilities, which we approximated as zero. As the time-step 

of one month is the lower limit of the incubation period, it was assumed that those PWID 

infected became infectious the following month.  

The annual transmission rate for a connected discordant pair, β, was fitted to ensure that the 

long term prevalence would be 50%, in keeping with previous observations. Using a series of 

100 simulated networks over 20 years, the equilibrium value of 50% was achieved when β 

took the value 0.20. 

The probability of a particular infected node completing treatment in a given year was 

dependent on the treatment coverage and the strategy used. Where α was the cure rate, μ the 

background death rate and σ the duration of injecting, the probability of moving from 
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Infected to Susceptible compartments given that treatment was completed in a particular time 

interval, ∆�, was given by: 

Pr�I��t� → S��t + ∆��� = 	α + �1 − α� ∗ �σ + μ�∆�.		 

For those not offered treatment that came to completion during the time interval, the 

probability was given by: 

	Pr	�I��t�−> S��t + ∆��� = �σ + μ�∆�. 

The fraction who failed treatment �1 − α�,	did not die and did not move from the injecting 

network were assumed to remain infectious and never get retreated.   

 

Model simulations on parameterised networks: intervention strategies 

The effect of five community treatment strategies on the prevalence of HCV was investigated 

and two different treatment efficacies were used (60% and 80%) to reflect old and new 

regimen success rates. Population coverage rates investigated were 5, 15 and 25 per 1000 

PWIDs per year. For each treatment efficacy/coverage combination, 100 simulations were 

performed, each with 20 randomly selected networks of size 524, producing 10,048 nodes. 

The simulated 10,048-node network was seeded with an infected node randomly chosen from 

each sub-network of size 524. A period of contiguous transmission was allowed to occur until 

further transmission did not take place for a given time step at which point an additional node 

was chosen at random until the starting prevalence of 50% was reached when new infection 

balanced rates of cessation of injecting and death.  

For each simulation, after the starting 50% prevalence was reached, the five different 

treatment strategies and a “no treatment” control strategy were applied. 

The five treatment strategies were as follows. 

1. Treat the infected node with the highest degree first. This theoretical approach 

assumes knowledge of the whole network and the most highly connected nodes are 

treated by preference. 

2. Treat the infected node with the greatest number of uninfected node-neighbours. 

Similar to strategy 1, this assumes knowledge of the network. 

3. Treat the infected node with the lowest number of infected node-neighbours. Again, 

similar to strategy 1, this assumes knowledge of the network. 
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4. Treat randomly selected nodes: selects a node at random at each treatment epoch from 

the infected nodes that have never failed treatment. 

5.  “Treat your friends”: choose a node at random as in 4, treat this node (the primary 

node) and treat all of its infected neighbours (secondary nodes). Continue choosing 

random nodes until coverage is reached for that time period. (Figure 1) 

 

Results of simulations on networks 

Effect of coverage on transmission and prevalence 

As treatment coverage increases, HCV prevalence at 10 years reduces for both the high 

efficacy and low efficacy treatment (Figure 2). For a given efficacy and treatment strategy, 

prevalence declines as coverage increases. The drop in prevalence with increasing coverage 

is most marked with higher efficacy moving from coverage of 5 to 15 PWID per 1000 per 

year. 

Effect of treatment efficacy on prevalence 

As expected, treatment efficacy of 80% leads to lower prevalence than treatment efficacy of 

60% (Figure 2). The difference becomes more marked as coverage increases.  

Simulations on networks: effect of intervention strategies 

Figure 2 shows the outcome of these five strategies expressed as prevalence per 1000 people 

with different treatment coverage, with both high and low efficacy treatments and over ten 

years. Within each set of parameters, all treatments perform better than no treatment, and all 

other strategies perform at least as well as random selection (strategy 4). The benefit of the 

“treat your friends” strategy (strategy 5) over the random strategy is most marked for higher 

efficacy treatment. For example at 10 years, treating 25 per 1000 PWID, the prevalence drops 

from 50 to 40% for the random strategy, and to 33% for the “treat your friends” strategy 

(6.5% difference, 95% CI 5.1 to 8.1%). At lower coverage, the effect is less marked.  

Figure 2 shows that the “highest degree first” strategy also performs poorly. Again, this 

becomes more marked as coverage increases, and is more marked with more efficacious 

treatment. 

 

Discussion 
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We developed several simulated networks with network characteristics informed by the 

observed injecting partner network among PWID in Melbourne, Australia. We conducted 

simulations of hepatitis C transmission across the simulated networks by seeding the 

networks and following probabilistic rules about transmission through the network until the 

baseline infection prevalence of 50% was reached. We then used these simulated networks 

and further simulated transmission and interventions. Intervention effectiveness was 

examined based on treatment coverage, treatment efficacy and treatment strategy. Our results 

suggest that taking the injecting network into account when treating PWID significantly 

impacts on HCV prevalence in the population over 5 and 10 years. 

The majority of HCV models assume homogenous mixing of PWID, which is equivalent to 

assuming that the injecting network is fully connected. In reality this is not the case – not 

every PWID has an equal probability of injecting or sharing needles with some other PWID. 

It makes sense to consider the effect of the PWID network on HCV transmission, particularly 

if the average path length of the network is relatively long as is observed in our PWID 

network. A member of the network can be “protected” from HCV through the number of 

transmission required to reach that particular individual. It also follows that PWIDs whose 

network members are HCV-infected are at increased risk of HCV infection and are likely to 

acquire HCV faster than PWIDs in a network containing no or few infected network 

members at a given time.  

As with our previous work on HCV incidence [41], our simulations suggest that PWIDs’ 

social networks should be considered in treatment strategies. The current work differs from 

previous work in that it uses a parsimonious model in which people are either susceptible or 

infectious. Spontaneous clearance of virus occurs randomly across all infections in this 

model, rather than being a characteristic of a particular individual (as in Rolls et al. [41]). 

Additionally, unlike in Rolls et al., the current study assumes the source of infection is from 

within the network. While it is unrealistic to assume that we can observe all of a the network 

of PWID, we suggest that hepatitis C infection is highly likely to arise from an injector’s 

network, even if not from the observed network. Since in this study we explicitly simulate 

inferred and unobserved nodes in the model, we think it reasonable to assume that hepatitis C 

has arisen within the network.  

Hence this study poses the question “even if we knew all network details, does a network-

based strategy perform better than a simpler strategy of treating an individual’s immediate 

injecting partners?”  We examine strategies that attempt to treat those with the lowest risk of 
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reinfection, treating those with the fewest infected neighbours first and we examine network 

strategies that attempt to treat those most likely to spread infection, treating the people with 

the most susceptible neighbours first. The results of the simulations are that under all 

coverage, duration and treatment efficacy scenarios that we examined, the full network-based 

strategies did not out-perform the “treat your friends strategy”, and the “treat your friends” 

strategy was superior to the random treatment strategy.  

Despite differences in methodology, this study has findings in common with those of Rolls et 

al. in that treating immediate injecting partners is a favourable strategy and treating those 

with the largest number of injecting partners is a poor strategy.[41] 

Under fully connected or homogenous mixing assumptions, random selection of nodes for 

treatment would perform as well as any other strategy. In our empirically grounded simulated 

networks this is not the case. Network structure modulates a treated individual’s risk of 

reinfection by affecting the risk to the treated individual posed by infected neighbours. The 

strategy of treating the highest-degree PWID first seems useful as it should lead to the 

greatest reduction in outward risk (risk from the infected person to others); however, this is 

only the case for high treatment coverage and efficacy, because PWID have a high risk of 

HCV reinfection. Also, using strategies based on ranking within the network (strategies 1–3) 

is not practical as they require full knowledge of the injecting network – highly unlikely in 

the real world. However, treatment strategy 5 (treat your friends) only requires an individual 

seeking treatment to be able to identify current network neighbours (people with whom they 

inject drugs). Strategy 5 performs as well as the more complex strategies in the simulations of 

this model, which covered realistic parameters for treatment coverage and efficacy.  

Most models assume random mixing of PWID, which is not realistic. In contrast, our model 

assumes the network is reasonably stable over time or does not differ in such a way that any 

observed network structure is lost over months or a few years. The median time for a 

partnership of injecting drug use (an edge of the network) in our observed network was 

approximately three years [45], making the static network assumptions used in the model 

relevant at least out to this time. If network mixing is highly dynamic then our model is likely 

to overestimate the benefit of a network strategy; on the other hand, random mixing models 

may overestimate the efficacy of random treatment.  The truth is likely to fall somewhere 

between the two, and future research should take into consideration the dynamic nature of 

injecting networks.  
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Our findings are particularly pertinent as new direct-acting antiviral agents for HCV 

treatment become available over the next five years. Treatment must remain the choice of the 

individual PWID and their treating physician, but in the context of limited resources and the 

likelihood of treatment costing at least $20,000 per course it makes sense that treatment 

should be targeted whenever possible and appropriate. As our data show, targeting treatment 

of current PWID using network structure accelerates reduction of the prevalence of HCV 

over the long term [25, 26]. Targeting could include asking PWID undergoing treatment to 

encourage their injecting network partners to seek treatment advice. The new therapies will 

have fewer side effects than the Peg/Riba regime [28] thus simplifying treatment of partners 

or people in the same social group around the same time. Also, the long path length of 

PWIDs’ network structure (as observed in this study) allows interventions to disconnect 

regions of low prevalence from regions of high prevalence.  

This study has limitations. Simulated networks based on a snowball sample were used, not a 

full empirical contact network. The simulated networks are designed to have features in 

common with the observed networks, but are potentially different if the un-sampled regions 

of the network are quite different. Additionally, dynamic changes in the network structure 

were not considered, nor were unobserved acquisitions of HCV outside the network. A 

dynamic structure is more realistic and may lead to different estimates of network based 

treatment effects. Both of these limitations could be addressed in future extensions of this 

model. The model also assumes equal probability of HCV transmission between each 

discordant pair of PWID who inject together, without stratifying risk based on duration of 

injecting, reported needle-sharing behaviour, behavioural risk mitigation strategies and 

frequency of use. These features could be added to the model in future work. Additionally, 

the networks of size 524 include singletons and isolated pairs of PWID, although they were 

not specifically modelled by the ERGM. The presence of large numbers of PWID in isolation 

will impact any network-based strategy. 

In summary, the structure of PWIDs’ injecting network influences HCV transmission and 

impacts significantly on the effectiveness of treatment strategies. As well as benefiting 

individual PWID by reducing their risk of HCV reinfection, taking PWIDs’ networks into 

account will ensure that new HCV treatments produce maximum community benefit by 

reducing the prevalence of HCV amongst PWID. 
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Table 1. Proportion of the PWID population with each set of attributes (taken from Rolls et 

al.[40]) 

Location Gender Age Population estimate (%) 

1 M > 25 21.9 

1 F > 25 11.8 

2 M > 25 16.4 

2 F > 25 8.9 

3 M > 25 9.5 

3 F > 25 5.1 

1 M < 25 7.3 

1 F < 25 3.9 

2 M < 25 6.4 

2 F < 25 3.4 

3 M < 25 3.5 

3 F < 25 1.9 

 

  

Page 17 of 27

Hepatology

Hepatology



 18

 

Table 2. Parameter estimates associated with individual attributes and subgraph structures, 

derived by Rolls et al.[40] 

Parameter Estimate Standard Error 

Edge -8.384 1.006 

Isolates -9.308 0.000 

Alt. k-star 0.611 0.424 

Alt. k-triangle 1.707 0.157 

Alt. k-2-path -0.563 0.157 

Same location 2.111 0.253 

Same gender 0.28 0.174 

Same age<25 0.787 0.174 

Same user frequency (daily versus less frequent) 0.429 0.156 
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Table 3. Parameters used in this model, their values and reason for choice of parameter. 

Parameter Meaning Value Reference 

 α efficacy of treatment 0.6 representing 0.45 
SVR for genotype 1 and 
0.8 SVR for genotype 2 
or 3 
->0.8 PI based therapies 

IFN-based therapies  
NCHECR (2006, pp. 29) [46] 
 
Ferenci  et al. [47] 

 
π 

risk of transmission 
per discordant pair 

0.20 Fitted to model to achieve 
50% prevalence 

 
δ 

probability of 
clearing infection 

0.26 Micallef et al. [48]  
NCHECR (2006, 
p.27&74)[46] 

µ    death rate 0.01 Stoove et al. 2008 [49] 

 ϕ number of people 
treated per 1000 
PWID 

15 25 50 This parameter was varied to 
assess achievable coverage 

ρ prevalence at 
baseline 

50% Aitken et al. 2008 [37] 
Miller et al. 2009 [38] 

σ 1/duration of 
injecting  

14 Dore et al. 2010 [50] 
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Figure 1. Five treatment strategies using a network based approach 

 

 

Figure 2 – Impact of hepatitis C treatment at 10 years with 60% and 80% treatment 

efficacy.  

2a. Low efficacy treatment (60%) with coverage of 5 per 1000 PWID per year 

 

2b. Low efficacy treatment (60%) with coverage of 15 per 1000 PWID per year 

 

2c. Low efficacy treatment (60%) with coverage of 25 per 1000 PWID per year 

 

2d. High efficacy treatment (80%) with coverage of 5 per 1000 PWID per year 

 

2e. High efficacy treatment (80%) with coverage of 15 per 1000 PWID per year 

 

2f. High efficacy treatment (80%) with coverage of 25 per 1000 PWID per year 
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