10 research outputs found

    Diffraction-limited plenoptic imaging with correlated light

    Full text link
    Traditional optical imaging faces an unavoidable trade-off between resolution and depth of field (DOF). To increase resolution, high numerical apertures (NA) are needed, but the associated large angular uncertainty results in a limited range of depths that can be put in sharp focus. Plenoptic imaging was introduced a few years ago to remedy this trade off. To this aim, plenoptic imaging reconstructs the path of light rays from the lens to the sensor. However, the improvement offered by standard plenoptic imaging is practical and not fundamental: the increased DOF leads to a proportional reduction of the resolution well above the diffraction limit imposed by the lens NA. In this paper, we demonstrate that correlation measurements enable pushing plenoptic imaging to its fundamental limits of both resolution and DOF. Namely, we demonstrate to maintain the imaging resolution at the diffraction limit while increasing the depth of field by a factor of 7. Our results represent the theoretical and experimental basis for the effective development of the promising applications of plenoptic imaging.Comment: 10 pages, 10 figure

    An Automatic Approach for Individual HU-Based Characterization of Lungs in COVID-19 Patients

    No full text
    The ongoing COVID-19 pandemic currently involves millions of people worldwide. Radiology plays an important role in the diagnosis and management of patients, and chest computed tomography (CT) is the most widely used imaging modality. An automatic method to characterize the lungs of COVID-19 patients based on individually optimized Hounsfield unit (HU) thresholds was developed and implemented. Lungs were considered as composed of three components—aerated, intermediate, and consolidated. Three methods based on analytic fit (Gaussian) and maximum gradient search (using polynomial and original data fits) were implemented. The methods were applied to a population of 166 patients scanned during the first wave of the pandemic. Preliminarily, the impact of the inter-scanner variability of the HU-density calibration curve was investigated. Results showed that inter-scanner variability was negligible. The median values of individual thresholds th1 (between aerated and intermediate components) were −768, −780, and −798 HU for the three methods, respectively. A significantly lower median value for th2 (between intermediate and consolidated components) was found for the maximum gradient on the data (−34 HU) compared to the other two methods (−114 and −87 HU). The maximum gradient on the data method was applied to quantify the three components in our population—the aerated, intermediate, and consolidation components showed median values of 793 ± 499 cc, 914 ± 291 cc, and 126 ± 111 cc, respectively, while the median value of the first peak was −853 ± 56 HU

    Characterization of two distant double-slits by chaotic light second-order interference

    Get PDF
    We present the experimental characterization of two distant double-slit masks illuminated by chaotic light, in the absence of first-order imaging and interference. The scheme exploits second-order interference of light propagating through two indistinguishable pairs of disjoint optical paths passing through the masks of interest. The proposed technique leads to a deeper understanding of biphoton interference and coherence, and opens the way to the development of novel schemes for retrieving information on the relative position and the spatial structure of distant objects, which is of interest in remote sensing, biomedical imaging, as well as monitoring of laser ablation, when first-order imaging and interference are not feasible

    Integrated chassis control: Classification, analysis and future trends

    No full text
    Integrated Chassis Control (ICC) is one of the most appealing subjects for vehicle dynamics specialists and researchers, due to the increasing number of chassis actuators of modern human-driven and automated cars. ICC ensures that the potential of the available actuators is systematically exploited, by overcoming the individual limitations, and solving conflicts and redundancies, which results into enhanced vehicle performance, ride comfort and safety. This paper is a literature review on ICC, and focuses on the topics that are left uncovered by the most recent surveys on the subject, or that are dealt with only by old surveys, namely: a) the systematic categorisation of the available ICC architectures, with the critical analysis of their strengths and weaknesses; b) the latest ICC approaches, which are becoming feasible with modern automotive microcontrollers; c) the driving performance requirements; and d) the procedures to objectively evaluate ICC performance. The manuscript aids the interested reader in the choice of the most appropriate ICC method for the specific requirements, and concludes with the recent developments and future trends

    On the vehicle state estimation benefits of smart tires

    Get PDF
    Smart tires are systems that are able to measure temperature, inflation pressure, footprint dimensions, and, importantly, tire contact forces. The integration of this additional information with the signals obtained from more conventional vehicle sensors, e.g., inertial measurement units, can enhance state estimation in production cars. This paper evaluates the use of smart tires to improve the estimation performance of an Unscented Kalman filter (UKF) based on a nonlinear vehicle dynamics model. Two UKF implementations, excluding and including smart tire information, are compared in terms of estimation accuracy of vehicle speed, sideslip angle and tire-road friction coefficient, using experimental data obtained on a high performance passenger car.Postprint (published version

    Small Renal Masses: Developing a Robust Radiomic Signature

    No full text
    (1) Background and (2) Methods: In this retrospective, observational, monocentric study, we selected a cohort of eighty-five patients (age range 38–87 years old, 51 men), enrolled between January 2014 and December 2020, with a newly diagnosed renal mass smaller than 4 cm (SRM) that later underwent nephrectomy surgery (partial or total) or tumorectomy with an associated histopatological study of the lesion. The radiomic features (RFs) of eighty-five SRMs were extracted from abdominal CTs bought in the portal venous phase using three different CT scanners. Lesions were manually segmented by an abdominal radiologist. Image analysis was performed with the Pyradiomic library of 3D-Slicer. A total of 108 RFs were included for each volume. A machine learning model based on radiomic features was developed to distinguish between benign and malignant small renal masses. The pipeline included redundant RFs elimination, RFs standardization, dataset balancing, exclusion of non-reproducible RFs, feature selection (FS), model training, model tuning and validation of unseen data. (3) Results: The study population was composed of fifty-one RCCs and thirty-four benign lesions (twenty-five oncocytomas, seven lipid-poor angiomyolipomas and two renal leiomyomas). The final radiomic signature included 10 RFs. The average performance of the model on unseen data was 0.79 ± 0.12 for ROC-AUC, 0.73 ± 0.12 for accuracy, 0.78 ± 0.19 for sensitivity and 0.63 ± 0.15 for specificity. (4) Conclusions: Using a robust pipeline, we found that the developed RFs signature is capable of distinguishing RCCs from benign renal tumors

    Syndromic true hermaphroditism due to an R-spondin1 (RSPO1) homozygous mutation

    No full text
    XX true hermaphroditism, also know as ovotesticular disorder of sexual development (DSD), is a disorder of gonadal development characterized by the presence of both ovarian and testicular tissue in a 46,XX individual. The genetic basis for XX true hermaphroditism and sex reversal syndromes unrelated to SRY translocation is still mostly unclear. We report mutational analysis of the RSPO1 gene in a 46,XX woman with true hermaphroditism, palmoplantar keratoderma, congenital bilateral corneal opacities, onychodystrophy, and hearing impairment. R-spondin1 is a member of the R-spondin protein family and its pivotal role in sex determination has been recently described. We identified a homozygous splice-donor-site mutation in the RSPO1 gene in our patient. We found that the c.286+1G>A mutation led to an aberrantly spliced mRNA (r.95_286del), which is presumably translated into a partially functional protein (p.Ile32_Ile95del). Our case demonstrates for the first time, to our knowledge, that XX true hermaphroditism can be caused by a single gene mutation. The reported findings represent a further step toward a complete understanding of the complex mechanisms leading to DSDs. © 2007 Wiley-Liss, Inc

    Fabrication of 3D printed patient-derived anthropomorphic breast phantoms for mammography and digital breast tomosynthesis: Imaging assessment with clinical X-ray spectra

    No full text
    Purpose: To design, fabricate and characterize 3D printed, anatomically realistic, compressed breast phantoms for digital mammography (DM) and digital breast tomosynthesis (DBT) x-ray imaging. Materials: We realized 3D printed phantoms simulating healthy breasts, via fused deposition modeling (FDM), with a layer resolution of 0.1 mm and 100% infill density, using a dual extruder printer. The digital models were derived from a public dataset of segmented clinical breast computed tomography scans. Three physical phantoms were printed in polyethylene terephthalate (PET), acrylonitrile–butadiene–styrene (ABS), or in polylactic-acid (PLA) materials, using ABS as a substitute for adipose tissue, and PLA or PET filaments for replicating glandular and skin tissues. 3D printed phantoms were imaged at three clinical centers with DM and DBT scanners, using typical spectra. Anatomical noise of the manufactured phantoms was evaluated via the estimates of the β parameter both in DM images and in images acquired via a clinical computed tomography (CT) scanner. Results: DM and DBT phantom images showed an inner texture qualitatively similar to the images of a clinical DM or DBT exam, suitably reproducing the glandular structure of their computational phantoms. β parameters evaluated in DM images of the manufactured phantoms ranged between 2.84 and 3.79; a lower β was calculated from the CT scan. Conclusions: FDM 3D printed compressed breast phantoms have been fabricated using ABS, PLA and PET filaments. DM and DBT images with clinical x-ray spectra showed realistic textures. These phantoms appear promising for clinical applications in quality assurance, image quality and dosimetry assessments

    Oxidative stress and medical antioxidant treatment in male infertility

    No full text
    corecore