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Abstract. Smart tires are systems that are able to measure temperature, 
inflation pressure, footprint dimensions, and, importantly, tire contact 
forces. The integration of this additional information with the signals ob-
tained from more conventional vehicle sensors, e.g., inertial measure-
ment units, can enhance state estimation in production cars. This paper 
evaluates the use of smart tires to improve the estimation performance of 
an Unscented Kalman filter (UKF) based on a nonlinear vehicle dynam-
ics model. Two UKF implementations, excluding and including smart 
tire information, are compared in terms of estimation accuracy of vehicle 
speed, sideslip angle and tire-road friction coefficient, using experi-
mental data obtained on a high performance passenger car. 

Keywords. Sideslip angle estimation, vehicle speed estimation, tire-road 
friction coefficient estimation, smart tire system. 

1 Introduction 

Modern vehicle dynamics controllers are improved by adding more information 
about vehicle states. The inputs from multiple sources are processed by state estimators 
to predict vehicle variables that are not easily measurable, such as the sideslip angle at 
the center of gravity, and the vehicle speed during high tire slip ratio conditions. The 
recent literature mostly adopts estimation algorithms based on Kalman filters using dy-
namic models of the vehicle. Despite the good accuracy provided by Extended Kalman 
filters, nowadays Unscented Kalman filters (UKFs) are widely adopted for their supe-
rior robustness with respect to sampling rates and approximation errors, for the same 
computational effort [1]. UKFs have also been proven to be effective in estimating ve-
hicle parameters, in addition to vehicle motion states, see [2]–[4].  

A common feature of the available model based state estimation implementations is 
to consider the tire as a passive component; the tire-road interaction is usually described 
by numerical models, which present significant inaccuracies and parameter dependen-
cies that can affect the quality of the estimation. In this context, the introduction of tire 
sensing systems ([5], [6]) offers the possibility of adding a direct feedback contribution 
to enhance state estimation robustness with respect to the inaccuracies of the tire force 
models. These solutions open promising scenarios in terms of vehicle state estimation 
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and control system development, see [7]– [10]. 
This paper addresses the benefits of the integration of smart tires in a dynamic model 

based state estimator, by experimentally comparing two UKF algorithms, including and 
excluding the information from a smart tire system, during extreme handling maneu-
vers. The points of novelty are: 
• The implementation of smart tire technologies developed by Pirelli, namely the 

CyberTM Tyre system, in a high performance passenger car; 
• The design of a novel CyberTM Tyre based UKF, i.e., the UKF-CT, which includes 

the CyberTM Tyre signals as feedback contribution in the measurement update phase 
of the filter; 

• The optimization of the estimator parameters to achieve a fair comparison between 
the two considered estimator designs, including and excluding the CyberTM Tyre 
inputs; 

• The objective evaluation of the resulting vehicle speed and sideslip angle estima-
tion, together with the road condition factor as additional filter parameter; 

• The analysis of the enhanced estimation performance and robustness associated 
with the longitudinal and vertical tire force information on each vehicle corner, pro-
vided by the CyberTM Tyre system. 

The paper is organized as follows: Section 2 is an overview on CyberTM Tyre system 
technology; Section 3 describes the state estimation architecture; finally, Section 4 de-
scribes the tuning procedure, and shows the comparison results between the UKF-CT 
and a state-of-the art estimator not using the CyberTM Tyre inputs, which is referred to 
as UKF in the remainder. 

2 CyberTM Tyre system technology 

In vehicle dynamics, one of the most promising innovations is to use the tires as 
sensing systems to provide useful information to the vehicle controllers. In fact, the tire 
is in a very privileged position being the only part of the vehicle that is in contact with 
the road. The smart tire concept refers to a tire equipped with sensors and digital com-
puting systems for monitoring thermal and mechanical parameters that may be shared 
with the vehicle control units while driving. The possibility of measuring important 
variables directly from the tires offers the potential for significantly improving the per-
formances of existing active control systems, and developing new control strategies for 
enhanced safety and efficiency. 

Pirelli Tyre S.p.A. is proposing technologies for embedding sensors in the inner liner 
of the tire, to make the tire itself an active element of the vehicle. The adopted sensors 
are tiny and light, and have minimal impact on the production process. They have a 
wide bandwidth, high reliability, and the robustness required to resist the impulses oc-
curring when the sensor enters and exits the footprint. The CyberTM Tyre project has 
the main purpose of developing an innovative sensor able to measure the relevant var-
iables through a tri-axial accelerometer, to condition the signals, and to transmit them 
to a receiver located on the vehicle. Another crucial aspect is the elaboration of the 
collected signals during the tire rolling motion, by adopting ad-hoc algorithms to extract 
useful information.  
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Fig. 1. Sensor reference frame: radial (r), tangential (t) and lateral (l) axes [7]. 

Among the available CyberTM Tyre features, this study uses the normal and longitu-
dinal tire force information that is provided once per wheel rotation, as each tire has 
one sensor placed on the inner liner, as shown in Fig. 1. The generation of these quan-
tities requires specific algorithms developed through preliminary indoor calibration 
tests, where the extrapolation of relevant parameters is possible in controlled environ-
ment.  

The CyberTM Tyre system capability of estimating the normal and longitudinal con-
tact forces is shown in Fig. 2, during a portion of an experimental vehicle test in a 
handling scenario involving considerable longitudinal and lateral accelerations. The 
comparison between the forces measured by a commercial dynamometric hub and the 
corresponding values from the CyberTM Tyre system highlights the smart tire ability to 
provide reliable estimation of the contact forces. 

 
Fig. 2. Comparison between the vertical and longitudinal forces on the rear right wheel, respec-
tively 𝐹",$$ and 𝐹%,$$, measured by a dynamometric hub and generated by the CyberTM Tyre sys-
tem during a typical handling maneuver. 

3 State estimation architecture 

This section describes the vehicle model embedded in the proposed UKF, and the 
UKF algorithms for state and parameter estimation. 
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3.1 Vehicle model 

The UKF implementations of this study use a 7-degree-of-freedom (7DOF) planar 
two-track model of the case study rear-wheel-drive high performance passenger car, 
which considers the longitudinal, lateral and yaw dynamics of the vehicle, as well as 
the wheel dynamics. The heave and pitch dynamics are not included, whilst the roll 
angle is considered statically dependent on the lateral acceleration and suspension char-
acteristics.  

Fig. 3 shows the vehicle schematic, with positive directions of the vectors, according 
to the ISO convention [11]. In the following formulations, the subscript	𝑖, with 𝑖 = 𝐹, 𝑅, 
indicates the axle, while the subscript 𝑗, with 𝑗 = 𝐿, 𝑅, indicates the vehicle side. In the 
figure, 𝑉 is the vehicle velocity, having longitudinal and lateral components 𝑣%	and 𝑣.; 
𝛽 is the sideslip angle; 𝐹%,01 	and 𝐹.,01 	are the longitudinal and lateral tire forces; 𝛿31 is 
the steering angle at the front wheels; 𝜓̇	is the vehicle yaw rate; 𝑡0 is the track width; 
and 𝑙0	is the longitudinal distance between the center of gravity and the	axle. In addition 
to the steering angle, the model inputs are the engine and braking torque values, 𝑀9:; 
and 𝑀<,01 . 

 
Fig. 3. Vehicle schematic with indication of the main parameters and variables. 

The longitudinal force balance equation is: 

 𝑎% = 𝑣̇% − 𝜓̇𝑣. =
1
𝑚AB(𝐹%,31 𝑐𝑜𝑠 𝛿31 − 𝐹.,31 𝑠𝑖𝑛 𝛿31)

$

1IJ

+B𝐹%,$1

$

1IJ

	− 𝐹LMNOP (1) 

where 𝑎% is the longitudinal acceleration, 𝑚 is the vehicle mass, and 𝐹LMNO is the aero-
dynamic drag force. The lateral force balance equation is: 

 𝑎. = 𝑣̇. + 𝜓̇𝑣% =
1
𝑚 AB(𝐹%,31𝑠𝑖𝑛𝛿31 + 𝐹.,31𝑐𝑜𝑠𝛿31)

$

1IJ

+B𝐹.,$1

$

1IJ

P (2) 

where 𝑎. is the lateral acceleration. The yaw moment balance equation is: 

𝒙

𝒚

𝑶 𝒛
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𝜓̈ =
1
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𝑡$
2 S𝐹%,$J − 𝐹%,$$T

+B𝑀",01P 

(3) 

where 𝑀",01 	is the self-aligning moment of the tires. The vehicle speed and sideslip angle 
are given by: 

 𝑉 = W𝑣%X + 𝑣.X	; 𝛽 = tan]^ V
𝑣.
𝑣%
_	 (4) 

The Pacejka Magic Formula 2002 calculates the rolling radius, laden radius, rolling 
resistance, longitudinal force, lateral force, and aligning moment of the tires, namely 
𝑅`,01, 𝑅a,01, 𝑀.,01 ,	𝐹%,01, 𝐹.,01  and 𝑀",01 , as functions of the slip angle 𝛼01, longitudinal slip 
ratio 𝜎%,01, vertical load 𝐹",01, and camber angle 𝛾01, which depends on the static roll 
angle. The tire slip ratio formulation resembles the one in [12]: 

 𝜎%,01 =
𝜔01𝑅`,01 − 𝑉fg,hi

maxlm𝑉fg,him , 𝜂𝑣%,oNMOp
 (5) 

where 𝑉fg,hi is the longitudinal component of the peripheral wheel speed; 𝜔01 is the an-
gular wheel speed; 𝑣%,oNMO	is the marginal speed, namely the minimum speed ensuring 
system stability when the vehicle model reaches a low speed; and 𝜂 = 1.1 is a safety 
coefficient. This formulation facilitates the removal of the wheel speed oscillations at 
very low speed, which are typical numerical issues of the conventional slip ratio for-
mulations. 

The calculation of the vertical tire loads on each corner, 𝐹",01, includes consideration 
of the longitudinal and lateral load transfers and aerodynamic downforce contributions. 
The lateral load transfers are evaluated in static conditions, considering the lateral ac-
celeration and roll moment distribution between the front and rear axles.  

Each wheel dynamics are described by a moment balance equation, which, for the 
rear wheels, is: 

 𝐽fqr,si𝜔̇$1 = 	0.5	𝑀9:;𝑖wM𝜂wM − 𝑀<,$1 − 𝐹%,$1𝑅a,$1 − 𝑀.,$1 (6) 
where 𝐽fqr,si is the equivalent mass moment of inertia of the wheel, including the power-
train inertia; 𝑖wM is the transmission gear ratio; and 𝜂wM is the transmission efficiency. 

3.2 Unscented Kalman filter 

The UKF ([1], [13]) is an iterative algorithm including: i) a time update step, in 
which the set of nonlinear equations describing the process are subject to forward Euler 
integration; and ii) a measurement update step, in which the data from the available 
sensors are used to estimate the 𝑛 states of the system [14].  

Within the UKF algorithm, the nonlinear model of Section 3.1 is re-arranged as: 
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 x𝑥z = 𝑓(𝑥z]^, 𝑢z,𝑤z]^)
𝑦z = ℎ(𝑥z, 𝑢z, 𝑣z)

 (7) 

where 𝑓 describes the system dynamics; ℎ is the measurement model; 𝑥z ∈ ℝ� is the 
state vector at the time step 𝑘, assumed to have Gaussian probability distribution 𝑃z ∈
ℝ�; 𝑢z ∈ ℝM and 𝑦z ∈ ℝo	are the input and output vectors; and the random variables 
𝑤z]^ ∈ ℝ� and 𝑣z ∈ ℝo are the process and measurement noise vectors. The noise vec-
tors are assumed to be uncorrelated with zero-mean Gaussian probability distributions 
𝑄 ∈ ℝ�×� and 𝑅 ∈ ℝo×o.  

To avoid neglecting any odd-moment information, the UKF algorithm uses an aug-
mented state vector, 𝑥N�O, with size 𝑁	 = 	2𝑛 + 𝑚, and the corresponding augmented 
error system covariance matrix, 𝑃N�O, see [1], [2]: 

 𝑥N�O = {𝑥z]^		𝑤z]^		𝑣z}�	; 𝑃N�O = 	 �
𝑃z]^ 0 0
0 𝑄 0
0 0 𝑅

� (8) 

As the noise components are uncorrelated, the covariance matrices are diagonal. Ide-
ally, 𝑄 and 𝑅 should change at each iteration because the uncertainties related to the 
process and sensors might vary. However, unlike 𝑃z]^, 𝑄 and 𝑅 are kept constant to 
reduce the computational load, and aid the estimation of the error covariance 𝑃z and the 
Kalman gain 𝐾z to quickly converge and stabilize [14].  

3.3 Parameter estimation      

In vehicle dynamics, the main issue of the model based state estimation approach is 
its strong dependency on varying vehicle parameters, i.e., vehicle mass, center of grav-
ity position, and tire parameters, including the tire-road friction coefficient. In particu-
lar, tire parameter accuracy is crucial in determining the contact forces. In [13], param-
eter estimation is accomplished by extending the augmented state vector with a new 
state-space representation during the time update step. The new state, i.e., the estimated 
parameter, is described by a random walk model, a stationary process only driven by 
the corresponding process noise.  

In this study, similarly to [7], the estimated parameter is the road condition factor, 
𝜇oN%. Its dynamics are described by: 

 𝜇̇oN% = 0 → 𝜇oN%,z = 𝜇oN%,z]^ + 𝑤���g,z]^ (9) 
where 𝑤���g,z]^	is the associated process noise. This factor constitutes an additional 
degree of freedom, increasing the vehicle model robustness by scaling the tire-road 
friction coefficient in the Pacejka tire model formulation [2].  

3.4 Unscented Kalman filter implementation 

Fig. 4 shows the schematic of the UKF-CT implementation, including the CyberTM 
Tyre measurements. The main objective of the UKF-CT is to obtain the values of the 
most relevant vehicle states, i.e., the vehicle sideslip angle at the center of gravity, 𝛽, 
and the vehicle speed, 𝑉, for a wide range of operating conditions. The state and input 
vectors resemble those of the UKF described in [2], which was implemented on a real 
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car by Bosch. The output vector includes the variables that are available on the control-
ler area network (CAN) bus of the vehicle, see [3], [4]. Moreover, due to the availability 
of the estimated longitudinal tire forces, 𝐹%,01 , and vertical loads, 𝐹",01, output by the 
CyberTM Tyre system, the vector 𝑦 is augmented accordingly. Hence, the resulting vec-
tors are: 

 

𝑥 = �𝑣% 𝑣. 𝜓̇ 𝜔01 𝜇oN% 	�
	

𝑢 = {𝛿31 𝑀9:; 𝑀<,01}
𝑦��3 = �𝑎% 𝑎. 𝜓̇ 𝜔01�

𝑦��3]:� = {𝑦��3 𝐹",01 𝐹%,01}

 (10) 

where the subscripts 𝑈𝐾𝐹	and 𝑈𝐾𝐹 − 𝐶𝑇, used here and in the remainder, refer to the 
estimators excluding and including the smart tire system estimations. The angular 
wheel speeds, 𝜔01, allow the estimation of vehicle speed; the additional measurement 
of 𝑎%, not included the implementation in [2], helps prevent performance degradation 
in conditions of significant longitudinal tire slip ratios. 

 
Fig. 4. Schematic of the UKF algorithm for vehicle state estimation. 

The measurement noise covariance 𝑅, i.e., the variance of the sensors, was deter-
mined through the a-priori analysis of sample measurements [14], whilst the matrix 𝑄 
is a tuning parameter that takes model uncertainties into account. To reduce the number 
of tuning parameters, the initial error system covariance matrix is set to be equal to 𝑄, 
as in [4]. The additional parameters are 𝛼��, a constant defining the spread of the sigma 
points, which is set to 1 in the proposed implementations; 𝛽��, a constant related to the 
type of probability distribution, equal to 2 for Gaussian distribution; and 𝜅��, a scaling 
parameter, set to 1 [1]. 

4 Results 

This section deals with the experimental comparison of the UKF and UKF-CT, and 
the analysis of the improvements deriving from the addition of the CyberTM Tyre force 
outputs. The experimental activity was performed on a McLaren 570s equipped with 
sensorized Pirelli P Zero Corsa tires, as well as an OxTS RT unit and a 6D IMU, to 
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directly measure the sideslip angle at the center of gravity, vehicle speed, and longitu-
dinal and lateral accelerations.  

The two filters were tuned through the optimization routine described in Section 4.1, 
and are compared by using the experimental measurements acquired during track tests 
covering a wide range of driving scenarios. The signals to perform the measurement 
updates within the filters are those available on the CAN bus of the vehicle, whilst the 
acquired signals from the OxTS RT unit and 6D IMU are used as reference to check 
the estimation performance. 

4.1 Tuning routine 

The filter tuning routine uses an optimization process to find the values of the diag-
onal elements of 𝑄 for both filters. The rationale is to obtain two sets of covariances, 
one for the UKF and one for the UKF-CT, which minimize optimality criteria, to 
achieve an objective comparison of the estimation performance. 

Due to the complexity and important nonlinearities, a multi-objective genetic algo-
rithm has been selected, minimizing three objective functions based on the root mean 
square error (𝑅𝑀𝑆𝐸) between: i) the data acquired from the OxTS RT unit and 6D IMU, 
in a portion of a handling circuit in dry conditions; and ii) the estimation outputs, ob-
tained by feeding the filters with the required CAN bus signals during the same training 
maneuver.  

The values of the three functions are normalized to build a 3D Pareto frontier. The 
selected optimum refers to the set of covariances corresponding to the closest point of 
the Pareto frontier to the origin of the 3D system. The optimization problem is defined 
as:  

 

min
� ¡¢

𝐽£ 𝑠. 𝑡. 𝑄0 ∈ ¤𝑄0,o0�, 𝑄0,oN%¥, 𝐽£ = ¦ 1
𝑁§
BS𝛽 − 𝛽̈T

X
©ª

0I^

min
� ¡¢

𝐽Ng 𝑠. 𝑡. 𝑄0 ∈ ¤𝑄0,o0�, 𝑄0,oN%¥ , 𝐽Ng = ¦ 1
𝑁§
B(𝑎% − 𝑎«%)X
©ª

0I^

min
� ¡¢

𝐽N¬ 𝑠. 𝑡. 𝑄0 ∈ ¤𝑄0,o0�, 𝑄0,oN%¥ , 𝐽N¬ = ¦ 1
𝑁§
BS𝑎. − 𝑎«.T

X
©ª

0I^

 (11) 

where 𝐽£, 𝐽Ng and 𝐽N¬ are the objective functions, considering the tracking performance 
in terms of sideslip angle, longitudinal acceleration, and lateral acceleration; 𝑁§	is the 
number of samples; 𝑄0,o0� and 𝑄0,oN% define the range of variation of each element 𝑄0	of 
𝑄; and the estimated quantities are indicated with ‘^’.  

The state vector is initialized as: 
 𝑥­ = {0.95𝑉 0 0 0.95𝜔3J 0.95𝜔3$ 0.95𝜔$J 0.95𝜔$$ 0.7} (12) 

where the initial vehicle and wheel speeds are 95% of the acquired CAN signals. The 
initial conditions for 𝛽	and 𝜓̇ are set to 0, as the vehicle usually starts from a straight 
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trajectory. Moreover, by considering an initial road condition factor of 0.7, the estima-
tor is brought relatively far from the ideal scenario in terms of speed and parameter 
estimation, and thus the optimization also tends to improve the convergence features of 
the estimator. 

The optimal covariances computed for the specific dry handling scenario were used 
to obtain the results in the following sections.  

4.2 Selected maneuvers and key performance indicators 

The selected maneuvers for state estimation performance comparison are: 
• Handling circuit lap in dry conditions. Note that this is a different dataset from the 

one used for the definition of the optimal covariances in Section 4.1; 
• Handling circuit lap in wet conditions, to analyze how the estimators perform in 

low-grip scenarios; 
• Open-loop step steer [15], to evaluate the response of the estimators during extreme 

cornering transients. 
Four key performance indicators (KPIs) are defined for an objective comparison: 

• The root mean square value of the estimation error for the considered states:  

 𝑅𝑀𝑆𝐸 = ¦ 1
𝑁§
BS𝛶 − 𝛶±TX
©ª

0I^

 (13) 

where 𝛶	is the real measurement, and 𝛶± is the corresponding estimated value; 
• The difference (in percentage) between 𝑅𝑀𝑆𝐸��3]:� and 𝑅𝑀𝑆𝐸��3: 

 Δ𝑅𝑀𝑆𝐸% =
𝑅𝑀𝑆𝐸��3]:� − 𝑅𝑀𝑆𝐸��3

𝑅𝑀𝑆𝐸��3	 100 (14) 

• The maximum absolute value of the estimation error: 
 𝑒	oN% = 𝑚𝑎𝑥µ𝛶 − 𝛶±µ (15) 

• The difference (in percentage) between 𝑒��3]:�oN%  and 𝑒��3oN%: 

 Δ𝑒%oN% =
𝑒��3]:�oN% − 𝑒��3oN%

𝑒��3oN% 100 (16) 

4.3 Handling circuit lap in dry conditions 

The estimation results along a portion of a race track in dry conditions are shown in 
Fig. 5, while the KPIs are reported in Table 1. The initial 𝜇oN% 	was set to 1.1, typical 
value for the dry tarmac of a vehicle proving ground, see [16]. 

Both filters provide good performance, with the UKF-CT showing lower 𝑅𝑀𝑆𝐸 val-
ues on the main estimated quantities. The vehicle speed estimation is in line with the 
target, set by the involved car maker, of not exceeding a 𝑅𝑀𝑆𝐸 value of 3% of the top 
speed, with maximum error values of 4.9 km/h and 3.3 km/h for the UKF and UKF-
CT. Furthermore, for both estimators, the maximum sideslip angle estimation error re-
mains within the limits mentioned by Grip et al. [16], i.e., within ~1 deg, which allows 
effective operation of active chassis controllers.  
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The profiles of the road condition factor are rather steady at reasonable levels for 
both estimators, even though they converge to different values in the second half of the 
test, i.e., 𝜇oN% 	 marginally increases for the UKF, and decreases for the UKF-CT. This 
kind of difference is normal, and is caused by the fact that the algorithms modify 𝜇oN% 	 
to improve the convergence and overall estimation, since the road condition factor dy-
namics are not described by a formulation based on the physics of the system, but they 
are only modeled as process noise [2]. Nevertheless, in the UKF-CT, 𝜇oN% 	can be con-
sidered closer to the real road condition. In fact, once the road condition factor of the 
UKF-CT varies, the 𝛽 estimate matches the measurement very well. On the contrary, 
in the same condition, the UKF underestimates |𝛽|, and therefore its 𝜇oN% can be con-
sidered overestimated. The conclusion is that the parameter estimation is enhanced by 
the additional contribution of the tire forces also in nominal dry tarmac scenarios, close 
to the one adopted for tuning the estimators. This causes the better sideslip angle esti-
mation performance of the UKF-CT.  

  
Fig. 5. Estimation results in a handling circuit lap in dry conditions. 

 
Table 1. KPIs for a handling circuit lap in dry conditions. 

Variable Unit 𝑅𝑀𝑆𝐸��3 𝑅𝑀𝑆𝐸��3]:� Δ𝑅𝑀𝑆𝐸%  𝑒��3oN% 𝑒��3]:�oN%  Δ𝑒%oN% 

𝑉 [km/h] 1.749 1.256 -28.17% 4.910 3.328 -32.22% 
𝛽 [deg] 0.363 0.293 -19.34% 1.070 0.957 -10.58% 
𝜓̇ [rad/s] 0.003 0.006 98.36% 0.012 0.029 135.84% 
𝑎% [m/s2] 0.526 0.390 -25.76% 2.277 2.790 22.50% 
𝑎. [m/s2] 0.433 0.369 -14.80% 1.623 1.176 -27.54% 
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4.4 Handling circuit lap in wet conditions 

The second scenario is a track lap with wet tarmac, in which 𝜇oN% is expected to be 
ranging from 0.5 to 0.7. The maneuver was selected to analyze filter robustness when 
the vehicle operates in low-grip conditions and at high |𝛽| values, reaching a maximum 
of 20 deg (Fig. 6). The initial condition for the estimated 𝜇oN% was purposely set to 1, 
to check the estimation convergence.  

In such extreme handling conditions, the tire model approximations can lead to in-
accuracies that increase the process uncertainty. To cope with this criticality, previous 
literature implemented adaptive strategies to vary the covariances whenever the process 
or sensors become unreliable due to the driving conditions [17]. However, as the scope 
of this research is to analyze the robustness improvements caused by the 𝐹%,01 	and 
𝐹",01 	measurements, the filter calibration was kept the same as for the dry handling ma-
neuver. 

In Fig. 6, the UKF shows greater oscillation peaks in the 𝑎% and 𝑎.	profiles, caused 
by the overestimation of the road condition factor, which, in the UKF-CT, converges 
more promptly and to the correct value. Overall, the UKF-CT provides better perfor-
mance, and is reliable also during the high slip ratio conditions occurring in the time 
window ~17-19 s, when the vehicle is subject to hard braking after a swift acceleration. 
Here, the UKF reaches the maximum speed estimation error, due to the loss of reliabil-
ity of the angular wheel speed signals. 

  
Fig. 6. Estimation results in a handling circuit lap in wet conditions. 

In Table 2, the 𝑅𝑀𝑆𝐸��3]:�	of the vehicle speed is approximately 1.5 km/h, which 
corresponds to a -33% Δ𝑅𝑀𝑆𝐸%. The superiority of the UKF-CT is also noticeable in 
the sideslip angle estimation, with a Δ𝑅𝑀𝑆𝐸% of -11%, and in the longitudinal and lat-
eral accelerations, with Δ𝑅𝑀𝑆𝐸% equal to -21.5% and -49%. These estimation errors 
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make the UKF-CT suitable for feedback control applications in large sideslip condi-
tions. In terms of yaw rate, in all considered scenarios the UKF-CT generates higher 
errors than the UKF; nonetheless, these do not cause concern, as they have limited val-
ues with respect to the nature of the maneuver.  

Table 2. KPIs for a handling circuit lap in wet conditions. 
Variable Unit 𝑅𝑀𝑆𝐸��3 𝑅𝑀𝑆𝐸��3]:� Δ𝑅𝑀𝑆𝐸%  𝑒��3oN% 𝑒��3]:�oN%  Δ𝑒%oN% 

𝑉 [km/h] 2.187 1.462 -33.14% 12.946 5.484 -57.64% 
𝛽 [deg] 1.397 1.239 -11.28% 4.220 4.715 11.74% 
𝜓̇ [rad/s] 0.007 0.015 110.10% 0.068 0.143 109.35% 
𝑎% [m/s2] 1.241 0.974 -21.52% 12.170 7.592 -37.62% 
𝑎. [m/s2] 1.055 0.538 -49.02% 8.155 3.069 -62.37% 

4.5 Open-loop step steer (ISO 7401, [15]) 

The last maneuver, i.e., a step steep in dry conditions, allows to evaluate the estima-
tion performance during an extreme cornering transient. The maneuver consists of a 
first steering wheel angle step with a 100 deg amplitude, followed by an abrupt coun-
tersteering action. The initial value of 𝜇oN% was purposely set to 0.7, which is different 
from the actual value for the specific experimental scenario.  

Grip et al. [16] discussed that when the vehicle is in steady-state conditions, the 𝜇oN% 
estimation does not have enough excitation to converge to its final value. Therefore, in 
this test, the road condition parameter remains constant (Fig. 7) until the step steering 
input is applied. Fig. 7 shows that the UKF-CT is significantly faster than the UKF in 
adapting 𝜇oN%. In fact, the UKF-CT takes 0.72 s to reach 95% of the final 𝜇oN% value, 
whilst the UKF takes 2.76 s. This means that the 𝑎% and 𝑎. estimates from the UKF are 
slower in matching the experimental peak values. For this reason, some authors, such 
as Piyabongkarn et al. [18], fuse the dynamic model based estimation with the output 
of kinematic models that are independent from vehicle and tire parameters, and can 
provide fast state estimation response during transients. However, the important con-
clusion of this analysis is that good and robust performance in extreme transient condi-
tions can be achieved through the tire force contribution of the UKF-CT, without the 
addition of any cascade of estimators or adaptive algorithms. 

Table 3 shows that the 𝑅𝑀𝑆𝐸 values for the sideslip angle and the acceleration com-
ponents are ~30% to ~50% lower for the UKF-CT. On the other hand, the vehicle speed 
estimation performance is comparable, and the yaw rate trend is well described in both 
cases, even if the error is smaller for the UKF. 
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Fig. 7. Estimation results in a step steer maneuver in dry conditions. 

 
Table 3. KPIs for a step steer maneuver in dry conditions. 

Variable Unit 𝑅𝑀𝑆𝐸��3 𝑅𝑀𝑆𝐸��3]:� Δ𝑅𝑀𝑆𝐸%  𝑒��3oN% 𝑒��3]:�oN%  Δ𝑒%oN% 

𝑉 [km/h] 2.009 1.947 -3.08% 3.733 4.563 22.24% 
𝛽 [deg] 2.004 0.916 -54.29% 5.413 2.912 -46.20% 
𝜓̇ [rad/s] 0.007 0.021 184.06% 0.040 0.120 198.66% 
𝑎% [m/s2] 0.711 0.430 -39.51% 2.723 1.547 -43.18% 
𝑎. [m/s2] 1.161 0.711 -38.76% 3.566 2.783 -21.97% 

Conclusions  

The paper described a novel estimator, the UKF-CT, of the key dynamic states for 
vehicle dynamics control, and discussed a selection of intermediate results in the con-
text of an extensive activity focused on a high performance passenger car. The main 
feature of the UKF-CT is the inclusion in the measurement vector of the longitudinal 
and vertical tire forces from the CyberTM Tyre system. 

The performance of the UKF-CT was compared with that of a state-of-the-art esti-
mator, i.e., a UKF not using the CyberTM Tyre system inputs, during extreme handling 
maneuvers with different tire-road friction conditions, carried out with a McLaren 570s. 
For fairness of comparison, the estimators were tuned through an optimization routine 
based on a genetic algorithm, to find the process covariances minimizing the estimation 
errors during dry tarmac operation. The covariances were then kept constant for the 
evaluation. 
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The experimental results show that the tire force feedback improves the robustness 
of the estimation and the speed of the adaptation to different road conditions. As a re-
sult, the UKF-CT implementation improves the estimation accuracy of the vehicle 
states, even during extreme transients and in low friction conditions.  

Future developments will explore robust tuning methods and adaptive implementa-
tions of the process covariances, and involve experimental testing along a wider range 
of driving scenarios. 
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