70 research outputs found

    Artificial Lighting as a Vector Attractant and Cause of Disease Diffusion

    Get PDF
    BACKGROUND: Traditionally, epidemiologists have considered electrification to be a positive factor. In fact, electrification and plumbing are typical initiatives that represent the integration of an isolated population into modern society, ensuring the control of pathogens and promoting public health. Nonetheless, electrification is always accompanied by night lighting that attracts insect vectors and changes people's behavior. Although this may lead to new modes of infection and increased transmission of insect-borne diseases, epidemiologists rarely consider the role of night lighting in their surveys. OBJECTIVE: We reviewed the epidemiological evidence concerning the role of lighting in the spread of vector-borne diseases to encourage other researchers to consider it in future studies. DISCUSSION: We present three infectious vector-borne diseases-Chagas, leishmaniasis, and malaria-and discuss evidence that suggests that the use of artificial lighting results in behavioral changes among human populations and changes in the prevalence of vector species and in the modes of transmission. CONCLUSION: Despite a surprising lack of studies, existing evidence supports our hypothesis that artificial lighting leads to a higher risk of infection from vector-borne diseases. We believe that this is related not only to the simple attraction of traditional vectors to light sources but also to changes in the behavior of both humans and insects that result in new modes of disease transmission. Considering the ongoing expansion of night lighting in developing countries, additional research on this subject is urgently needed.National Council for Scientific and Technological Development (CNPq), Brasilia, Brazi

    Adaptations for nocturnal vision in insect apposition eyes

    Get PDF
    Due to our own preference for bright light, we tend to forget that many insects are active in very dim light. The reasons for nocturnal activity are most easily seen in tropical areas of the world, where animals face severe competition for food and nocturnal insects are able to forage in a climate of reduced competition and predation. Generally nocturnal insects possess superposition compound eyes. This eye design is truly optimized for dim light as photons can be gathered through large apertures comprised of hundreds of lenses. In apposition eyes, on the other hand, the aperture consists of a single lens resulting in a poor photon catch and unreliable vision in dim light. Apposition eyes are therefore typically found in day-active insects and according to theoretical calculations should render bees blind by mid dusk. Nevertheless, the tropical bee Megalopta genalis and the wasp Apoica pallens have managed the transition to a nocturnal lifestyle while retaining their highly unsuitable apposition eye design. Far from being blind, these bees and wasps forage at extremely low light intensities. Moreover, M. genalis is the first insect shown to use landmark navigation at light intensities less than starlight. How do their apposition eyes permit such complex visual behaviour in so little light? Optical adaptations can significantly enhance sensitivity in apposition eyes. In bees and wasps, the major effect comes from their extremely wide photoreceptors, which are able to trap light reaching the eye from a large visual angle. These optical adaptations lead to a 30-fold increase in sensitivity compared to diurnal bees and wasps. This however is not sufficient for the 8 log units difference in light intensity between day and night. Our hypothesis is that neural adaptations in the form of spatial and temporal summation must be involved. By means of spatial summation the eyes could sum signals from large groups of visual units (ommatidia), in order to improve sensitivity at the cost of coarser spatial resolution. In nocturnal bees, spatial summation could be mediated via their wide laterally-spreading first-order interneurons (L-fibres) present in the first optic ganglion (lamina). These L-fibres have significantly larger dendritic fields than equivalent neurons in diurnal bees and the potential to sum photons from up to 18 visual units. Theoretical modelling further supports this hypothesis, as the optimal dendritic field size predicted by the model agrees well with the anatomical data

    Mechanisms, functions and ecology of colour vision in the honeybee.

    Get PDF
    notes: PMCID: PMC4035557types: Journal Article© The Author(s) 2014.This is an open access article that is freely available in ORE or from Springerlink.com. Please cite the published version available at: http://link.springer.com/article/10.1007%2Fs00359-014-0915-1Research in the honeybee has laid the foundations for our understanding of insect colour vision. The trichromatic colour vision of honeybees shares fundamental properties with primate and human colour perception, such as colour constancy, colour opponency, segregation of colour and brightness coding. Laborious efforts to reconstruct the colour vision pathway in the honeybee have provided detailed descriptions of neural connectivity and the properties of photoreceptors and interneurons in the optic lobes of the bee brain. The modelling of colour perception advanced with the establishment of colour discrimination models that were based on experimental data, the Colour-Opponent Coding and Receptor Noise-Limited models, which are important tools for the quantitative assessment of bee colour vision and colour-guided behaviours. Major insights into the visual ecology of bees have been gained combining behavioural experiments and quantitative modelling, and asking how bee vision has influenced the evolution of flower colours and patterns. Recently research has focussed on the discrimination and categorisation of coloured patterns, colourful scenes and various other groupings of coloured stimuli, highlighting the bees' behavioural flexibility. The identification of perceptual mechanisms remains of fundamental importance for the interpretation of their learning strategies and performance in diverse experimental tasks.Biotechnology and Biological Sciences Research Council (BBSRC
    corecore