96 research outputs found

    Self‐shading and meltwater spreading control the transition from light to iron limitation in an Antarctic coastal polynya

    Get PDF
    Dotson Ice Shelf (DIS) in West Antarctica is undergoing rapid basal melting driven by intrusions of warm, saline Circumpolar Deep Water (CDW) onto the continental shelf. Meltwater from DIS is thought to influence biology in the adjacent Amundsen Sea Polynya (ASP), which exhibits the highest Net Primary Productivity (NPP) per unit area of any coastal polynya in the Southern Ocean. However, the relative importance of iron and light in colimiting the spring phytoplankton bloom in the ASP remains poorly understood. In this modelling study we first investigate the mechanisms by which ice shelves impact NPP, then map spatio‐temporal patterns in iron‐light colimitation, and finally examine the environmental drivers of iron and light supply. We find that ice shelf melting leads to greater upper ocean iron concentrations, both directly due to release of iron from sediments entrained at the glacier bed, and indirectly via a buoyancy‐driven overturning circulation which pulls iron from CDW to the surface. Both of these mechanisms increase NPP compared to experiments where ice shelf melt is suppressed. We then show that the phytoplankton self‐shading feedback delays the bloom and reduces peak NPP by 80% compared to experiments where light penetration is independent of chlorophyll. Compared to light limitation, iron limitation due to phytoplankton uptake is more important a) later in the season, b) higher in the water column and c) further from the ice shelf. Finally, sensitivity experiments show that variability in CDW intrusion influences NPP by controlling the horizontal spreading of iron‐rich meltwater

    Temporal and Spatial Scales of Correlation in Marine Phytoplankton Communities

    Get PDF
    Ocean circulation shapes marine phytoplankton communities by setting environmental conditions and dispersing organisms. In addition, processes acting on the water column (e.g., heat fluxes and mixing) affect the community structure by modulating environmental variables that determine in situ growth and loss rates. Understanding the scales over which phytoplankton communities vary in time and space is key to elucidate the relative contributions of local processes and ocean circulation on phytoplankton distributions. Using a global ocean ecosystem model, we quantify temporal and spatial correlation scales for phytoplankton phenotypes with diverse functional traits and cell sizes. Through this analysis, we address these questions: (1) Over what timescales do perturbations in phytoplankton populations persist? and (2) over what distances are variations in phytoplankton populations synchronous? We find that correlation timescales are short in regions of strong currents, such as the Gulf Stream and Antarctic Circumpolar Current. Conversely, in the subtropical gyres, phytoplankton population anomalies persist for relatively long periods. Spatial correlation length scales are elongated near ocean fronts and narrow boundary currents, reflecting flow paths and frontal patterns. In contrast, we find nearly isotropic spatial correlation fields where current speeds are small, or where mixing acts roughly equally in all directions. Phytoplankton timescales and length scales also vary coherently with phytoplankton body size. In addition to aiding understanding of phytoplankton population dynamics, our results provide global insights to guide the design of biological ocean observing networks and to better interpret data collected at long-term monitoring stations

    The Southern Ocean Observing System (SOOS)

    Get PDF
    [in “State of the Climate in 2014” : Special Supplement to the Bulletin of the American Meteorological Society Vol. 96, No. 7, July 2015

    Impact of atmospheric rivers on Arctic sea ice variations

    Get PDF
    Arctic sea ice has been declining rapidly in recent decades. We investigate how the poleward transport of moisture and heat from lower latitudes through atmospheric rivers (ARs) influences Arctic sea ice variations. We use hourly ERA5 (fifth-generation European Reanalysis) data for 1981–2020 at 0.25∘ × 0.25∘ resolution to examine the meteorological conditions and sea ice changes associated with ARs in the Arctic. In the years 2012 and 2020, which had an extremely low summer Arctic sea ice extent, we show that the individual AR events associated with large cyclones initiate a rapid sea ice decrease through turbulent heat fluxes and winds. We carry out further statistical analysis of the meteorological conditions and sea ice variations for 1981–2020 over the entire Arctic Ocean. We find that on weather timescales the atmospheric moisture content anticorrelates significantly with the sea ice concentration tendency almost everywhere in the Arctic Ocean, while the dynamic sea ice motion driven by northward winds further reduces the sea ice concentration.</p

    Ross Gyre variability modulates oceanic heat supply toward the West Antarctic continental shelf

    Get PDF
    C.J.P., G.A.M., M.R.M., L.D.T., and S.T.G. were supported by NSF PLR-1425989 and OPP-1936222 (Southern Ocean Carbon and Climate Observations and Modeling project). C.J.P. received additional support from a NOAA Climate & Global Change Postdoctoral Fellowship. G.A.M. received additional support from UKRI Grant Ref. MR/W013835/1. G.E.M. was supported by NSF OPP-2220969. R.Q.P. was supported by the High Meadows Environmental Institute Internship Program. R.M. was supported by the General Sir John Monash Foundation. A.F.T. was supported by NSF OPP-1644172 and NASA grant 80NSSC21K0916. M.R.M. also acknowledges funding from NSF awards OCE-1924388 and OPP-2319829 and NASA awards 80NSSC22K0387 and 80NSSC20K1076.West Antarctic Ice Sheet mass loss is a major source of uncertainty in sea level projections. The primary driver of this melting is oceanic heat from Circumpolar Deep Water originating offshore in the Antarctic Circumpolar Current. Yet, in assessing melt variability, open ocean processes have received considerably less attention than those governing cross-shelf exchange. Here, we use Lagrangian particle release experiments in an ocean model to investigate the pathways by which Circumpolar Deep Water moves toward the continental shelf across the Pacific sector of the Southern Ocean. We show that Ross Gyre expansion, linked to wind and sea ice variability, increases poleward heat transport along the gyre’s eastern limb and the relative fraction of transport toward the Amundsen Sea. Ross Gyre variability, therefore, influences oceanic heat supply toward the West Antarctic continental slope. Understanding remote controls on basal melt is necessary to predict the ice sheet response to anthropogenic forcing.Publisher PDFPeer reviewe

    Attribution of space-time variability in global-ocean dissolved inorganic Carbon

    Get PDF
    The inventory and variability of oceanic dissolved inorganic carbon (DIC) is driven by the interplay of physical, chemical, and biological processes. Quantifying the spatiotemporal variability of these drivers is crucial for a mechanistic understanding of the ocean carbon sink and its future trajectory. Here, we use the Estimating the Circulation and Climate of the Ocean-Darwin ocean biogeochemistry state estimate to generate a global-ocean, data-constrained DIC budget and investigate how spatial and seasonal-to-interannual variability in three-dimensional circulation, air-sea CO2 flux, and biological processes have modulated the ocean sink for 1995–2018. Our results demonstrate substantial compensation between budget terms, resulting in distinct upper-ocean carbon regimes. For example, boundary current regions have strong contributions from vertical diffusion while equatorial regions exhibit compensation between upwelling and biological processes. When integrated across the full ocean depth, the 24-year DIC mass increase of 64 Pg C (2.7 Pg C year−1) primarily tracks the anthropogenic CO2 growth rate, with biological processes providing a small contribution of 2 (1.4 Pg C). In the upper 100 m, which stores roughly 13 (8.1 Pg C) of the global increase, we find that circulation provides the largest DIC gain (6.3 Pg C year−1) and biological processes are the largest loss (8.6 Pg C year−1). Interannual variability is dominated by vertical advection in equatorial regions, with the 1997–1998 El Niño-Southern Oscillation causing the largest year-to-year change in upper-ocean DIC (2.1 Pg C). Our results provide a novel, data-constrained framework for an improved mechanistic understanding of natural and anthropogenic perturbations to the ocean sink. © 2022. The Authors

    Carbon dynamics of the Weddell Gyre, Southern Ocean

    Get PDF
    The accumulation of carbon within the Weddell Gyre and its exchanges across the gyre boundaries are investigated with three recent full-depth oceanographic sections enclosing this climatically important region. The combination of carbonmeasurements with ocean circulation transport estimates from a box inverse analysis reveals that deepwater transports associated with Warm Deep Water (WDW) and Weddell Sea Deep Water dominate the gyre’s carbon budget, while a dual-cell vertical overturning circulation leads to both upwelling and the delivery of large quantities of carbon to the deep ocean. Historical sea surface pCO2 observations, interpolated using a neural network technique, confirm the net summertime sink of 0.044 to 0.058 ± 0.010 Pg C / yr derived from the inversion. However, a wintertime outgassing signal similar in size results in a statistically insignificant annual air-to-sea CO2 flux of 0.002± 0.007 Pg C / yr (mean 1998–2011) to 0.012 ± 0.024 Pg C/ yr (mean 2008–2010) to be diagnosed for the Weddell Gyre. A surface layer carbon balance, independently derived fromin situ biogeochemical measurements, reveals that freshwater inputs and biological drawdown decrease surface ocean inorganic carbon levels more than they are increased by WDW entrainment, resulting in an estimated annual carbon sink of 0.033 ± 0.021 Pg C / yr. Although relatively less efficient for carbon uptake than the global oceans, the summertime Weddell Gyre suppresses the winter outgassing signal, while its biological pump and deepwater formation act as key conduits for transporting natural and anthropogenic carbon to the deep ocean where they can reside for long time scales

    Return of the Maud Rise polynya: climate litmus or sea ice anomaly? [in “State of the Climate in 2017”]

    Get PDF
    The Maud Rise polynya is a persistent area of open waterwithin the sea ice cover of the Southern Ocean, which overliesan area of elevated topography called Maud Rise (66°S, 3°E)located in the eastern sector of the Weddell Sea (Fig. SB6.1a).It is termed a “Weddell polynya” if it grows and migrates westwardinto the central Weddell Sea. This larger sized polynyawas first observed in satellite data in 1974 and recurred for eachof the two subsequent austral winters (Zwally and Gloersen1977; Carsey 1980). Its large size, ~300 000 km2, meant thatit could contribute strongly to the transfer of heat from theocean to the atmosphere in winter and, hence, instigate densewater production and the renewal of deep ocean waters in theWeddell Sea (Gordon 1978). The amount of deep water formedvia this route was estimated at 1–3 Sverdrups (Martinson etal. 1981). The 1974–76 polynya may have been responsible forup to 34% of observed warming of the deep Southern Ocean(Zanowski et al. 2015). Smaller features, perhaps associatedwith topographically driven upwelling of warm waters, havebeen observed subsequently (Comiso and Gordon 1987), buta large polynya had not re-appeared until recently and unexpectedlyduring austral winters 2016 and 2017
    • 

    corecore