102 research outputs found
Selfâshading and meltwater spreading control the transition from light to iron limitation in an Antarctic coastal polynya
Dotson Ice Shelf (DIS) in West Antarctica is undergoing rapid basal melting driven by intrusions of warm, saline Circumpolar Deep Water (CDW) onto the continental shelf. Meltwater from DIS is thought to influence biology in the adjacent Amundsen Sea Polynya (ASP), which exhibits the highest Net Primary Productivity (NPP) per unit area of any coastal polynya in the Southern Ocean. However, the relative importance of iron and light in colimiting the spring phytoplankton bloom in the ASP remains poorly understood. In this modelling study we first investigate the mechanisms by which ice shelves impact NPP, then map spatioâtemporal patterns in ironâlight colimitation, and finally examine the environmental drivers of iron and light supply. We find that ice shelf melting leads to greater upper ocean iron concentrations, both directly due to release of iron from sediments entrained at the glacier bed, and indirectly via a buoyancyâdriven overturning circulation which pulls iron from CDW to the surface. Both of these mechanisms increase NPP compared to experiments where ice shelf melt is suppressed. We then show that the phytoplankton selfâshading feedback delays the bloom and reduces peak NPP by 80% compared to experiments where light penetration is independent of chlorophyll. Compared to light limitation, iron limitation due to phytoplankton uptake is more important a) later in the season, b) higher in the water column and c) further from the ice shelf. Finally, sensitivity experiments show that variability in CDW intrusion influences NPP by controlling the horizontal spreading of ironârich meltwater
Temporal and Spatial Scales of Correlation in Marine Phytoplankton Communities
Ocean circulation shapes marine phytoplankton communities by setting environmental conditions and dispersing organisms. In addition, processes acting on the water column (e.g., heat fluxes and mixing) affect the community structure by modulating environmental variables that determine in situ growth and loss rates. Understanding the scales over which phytoplankton communities vary in time and space is key to elucidate the relative contributions of local processes and ocean circulation on phytoplankton distributions. Using a global ocean ecosystem model, we quantify temporal and spatial correlation scales for phytoplankton phenotypes with diverse functional traits and cell sizes. Through this analysis, we address these questions: (1) Over what timescales do perturbations in phytoplankton populations persist? and (2) over what distances are variations in phytoplankton populations synchronous? We find that correlation timescales are short in regions of strong currents, such as the Gulf Stream and Antarctic Circumpolar Current. Conversely, in the subtropical gyres, phytoplankton population anomalies persist for relatively long periods. Spatial correlation length scales are elongated near ocean fronts and narrow boundary currents, reflecting flow paths and frontal patterns. In contrast, we find nearly isotropic spatial correlation fields where current speeds are small, or where mixing acts roughly equally in all directions. Phytoplankton timescales and length scales also vary coherently with phytoplankton body size. In addition to aiding understanding of phytoplankton population dynamics, our results provide global insights to guide the design of biological ocean observing networks and to better interpret data collected at long-term monitoring stations
Recommended from our members
The effects of enhanced sea ice export from the Ross Sea on recent cooling and freshening of the Southeast Pacific
The top 2000 m of the Southern Ocean has freshened and warmed over recent decades. However, the high-latitude (south of 50°S) southeast Pacific was observed to be cooler and fresher in the years 2008-2010 compared to 2005-2007 over a wide depth range including surface, mode, and intermediate waters. The causes and impacts of this event are analyzed using the oceanâsea-ice data-assimilating Southern Ocean State Estimate (SOSE) and observationally based products. In 2008-2010, a strong positive Southern Annular Mode coincided with a negative El Niño Southern Oscillation and a deep Amundsen Sea Low. Enhanced meridional winds drove strong sea ice export from the eastern Ross Sea, bringing large amounts of ice to the Amundsen Sea ice edge. In 2008, together with increased precipitation, this introduced a strong freshwater anomaly that was advected eastward by the Antarctic Circumpolar Current (ACC), mixing along the way. This anomaly entered the ocean interior not only as Antarctic Intermediate Water, but also as lighter Southeast Pacific Subantarctic Mode Water (SEPSAMW). A numerical particle release experiment carried out in SOSE , showed that the Ross Sea sector was the dominant source of particles reaching the SEPSAMW formation region. This suggests that large-scale climate fluctuations can induce strong interannual variability of volume and properties of SEPSAMW. These fluctuations act at different time scales: instantaneously via direct forcing, and also lagged over advective time scales of several years from upstream regions
The Southern Ocean Observing System (SOOS)
[in âState of the Climate in 2014â : Special Supplement to the Bulletin of the American Meteorological Society Vol. 96, No. 7, July 2015
Spatiotemporal Characteristics of the Near-Surface Turbulent Cascade at the Submesoscale in the Drake Passage.
Submesoscale currents and internal gravity waves achieve an intense turbulent cascade near the ocean surface [depth of 0âO(100) m], which is thought to give rise to significant energy sources and sinks for mesoscale eddies. Here, we characterize the contributions of nonwave currents (NWCs; including eddies and fronts) and internal gravity waves (IGWs; including near-inertial motions, lee waves, and the internal wave continuum) to near-surface submesoscale turbulence in the Drake Passage. Using a numerical simulation, we combine Lagrangian filtering and a Helmholtz decomposition to identify NWCs and IGWs and to characterize their dynamics (rotational versus divergent). We show that NWCs and IGWs contribute in different proportions to the inverse and forward turbulent kinetic energy cascades, based on their dynamics and spatiotemporal scales. Purely rotational NWCs cause most of the inverse cascade, while coupled rotationalâdivergent components of NWCs and coupled NWCâIGWs cause the forward cascade. The cascade changes direction at a spatial scale at which motions become increasingly divergent. However, the forward cascade is ultimately limited by the motionsâ spatiotemporal scales. The bulk of the forward cascade (80%â95%) is caused by NWCs and IGWs of small spatiotemporal scales (L < 10 km; T < 6 h), which are primarily rotational: submesoscale eddies, fronts, and the internal wave continuum. These motions also cause a significant part of the inverse cascade (30%). Our results highlight the requirement for high spatiotemporal resolutions to diagnose the properties and large-scale impacts of near-surface submesoscale turbulence accurately, with significant implications for ocean energy cycle study strategies
Impact of atmospheric rivers on Arctic sea ice variations
Arctic sea ice has been declining rapidly in recent decades. We investigate how the poleward transport of moisture and heat from lower latitudes through atmospheric rivers (ARs) influences Arctic sea ice variations. We use hourly ERA5 (fifth-generation European Reanalysis) data for 1981â2020 at 0.25ââĂâ0.25â resolution to examine the meteorological conditions and sea ice changes associated with ARs in the Arctic. In the years 2012 and 2020, which had an extremely low summer Arctic sea ice extent, we show that the individual AR events associated with large cyclones initiate a rapid sea ice decrease through turbulent heat fluxes and winds. We carry out further statistical analysis of the meteorological conditions and sea ice variations for 1981â2020 over the entire Arctic Ocean. We find that on weather timescales the atmospheric moisture content anticorrelates significantly with the sea ice concentration tendency almost everywhere in the Arctic Ocean, while the dynamic sea ice motion driven by northward winds further reduces the sea ice concentration.</p
Ross Gyre variability modulates oceanic heat supply toward the West Antarctic continental shelf
C.J.P., G.A.M., M.R.M., L.D.T., and S.T.G. were supported by NSF PLR-1425989 and OPP-1936222 (Southern Ocean Carbon and Climate Observations and Modeling project). C.J.P. received additional support from a NOAA Climate & Global Change Postdoctoral Fellowship. G.A.M. received additional support from UKRI Grant Ref. MR/W013835/1. G.E.M. was supported by NSF OPP-2220969. R.Q.P. was supported by the High Meadows Environmental Institute Internship Program. R.M. was supported by the General Sir John Monash Foundation. A.F.T. was supported by NSF OPP-1644172 and NASA grant 80NSSC21K0916. M.R.M. also acknowledges funding from NSF awards OCE-1924388 and OPP-2319829 and NASA awards 80NSSC22K0387 and 80NSSC20K1076.West Antarctic Ice Sheet mass loss is a major source of uncertainty in sea level projections. The primary driver of this melting is oceanic heat from Circumpolar Deep Water originating offshore in the Antarctic Circumpolar Current. Yet, in assessing melt variability, open ocean processes have received considerably less attention than those governing cross-shelf exchange. Here, we use Lagrangian particle release experiments in an ocean model to investigate the pathways by which Circumpolar Deep Water moves toward the continental shelf across the Pacific sector of the Southern Ocean. We show that Ross Gyre expansion, linked to wind and sea ice variability, increases poleward heat transport along the gyreâs eastern limb and the relative fraction of transport toward the Amundsen Sea. Ross Gyre variability, therefore, influences oceanic heat supply toward the West Antarctic continental slope. Understanding remote controls on basal melt is necessary to predict the ice sheet response to anthropogenic forcing.Publisher PDFPeer reviewe
Attribution of space-time variability in global-ocean dissolved inorganic Carbon
The inventory and variability of oceanic dissolved inorganic carbon (DIC) is driven by the interplay of physical, chemical, and biological processes. Quantifying the spatiotemporal variability of these drivers is crucial for a mechanistic understanding of the ocean carbon sink and its future trajectory. Here, we use the Estimating the Circulation and Climate of the Ocean-Darwin ocean biogeochemistry state estimate to generate a global-ocean, data-constrained DIC budget and investigate how spatial and seasonal-to-interannual variability in three-dimensional circulation, air-sea CO2 flux, and biological processes have modulated the ocean sink for 1995â2018. Our results demonstrate substantial compensation between budget terms, resulting in distinct upper-ocean carbon regimes. For example, boundary current regions have strong contributions from vertical diffusion while equatorial regions exhibit compensation between upwelling and biological processes. When integrated across the full ocean depth, the 24-year DIC mass increase of 64 Pg C (2.7 Pg C yearâ1) primarily tracks the anthropogenic CO2 growth rate, with biological processes providing a small contribution of 2 (1.4 Pg C). In the upper 100 m, which stores roughly 13 (8.1 Pg C) of the global increase, we find that circulation provides the largest DIC gain (6.3 Pg C yearâ1) and biological processes are the largest loss (8.6 Pg C yearâ1). Interannual variability is dominated by vertical advection in equatorial regions, with the 1997â1998 El Niño-Southern Oscillation causing the largest year-to-year change in upper-ocean DIC (2.1 Pg C). Our results provide a novel, data-constrained framework for an improved mechanistic understanding of natural and anthropogenic perturbations to the ocean sink. © 2022. The Authors
Carbon dynamics of the Weddell Gyre, Southern Ocean
The accumulation of carbon within the Weddell Gyre and its exchanges across the gyre boundaries are investigated with three recent full-depth oceanographic sections enclosing this climatically important region. The combination of carbonmeasurements with ocean circulation transport estimates from a box inverse analysis reveals that deepwater transports associated with Warm Deep Water (WDW) and Weddell Sea Deep Water dominate the gyreâs carbon budget, while a dual-cell vertical overturning circulation leads to both upwelling and the delivery of large quantities of carbon to the deep ocean. Historical sea surface pCO2 observations, interpolated using a neural network technique, confirm the net summertime sink of 0.044 to 0.058 ± 0.010 Pg C / yr derived from the inversion. However, a wintertime outgassing signal similar in size results in a statistically insignificant annual air-to-sea CO2 flux of 0.002± 0.007 Pg C / yr (mean 1998â2011) to 0.012 ± 0.024 Pg C/ yr (mean 2008â2010) to be diagnosed for the Weddell Gyre. A surface layer carbon balance, independently derived fromin situ biogeochemical measurements, reveals that freshwater inputs and biological drawdown decrease surface ocean inorganic carbon levels more than they are increased by WDW entrainment, resulting in an estimated annual carbon sink of 0.033 ± 0.021 Pg C / yr. Although relatively less efficient for carbon uptake than the global oceans, the summertime Weddell Gyre suppresses the winter outgassing signal, while its biological pump and deepwater formation act as key conduits for transporting natural and anthropogenic carbon to the deep ocean where they can reside for long time scales
- âŠ