606 research outputs found

    A Renaissance study of Am stars. I. The mass ratio distribution

    Full text link
    Triggered by the study of Carquillat & Prieur (2007, MNRAS, 380, 1064) of Am binaries, I reanalyse their sample of 60 orbits to derive the mass ratio distribution (MRD), assuming as they did a priori functional forms, i.e. a power law or a Gaussian. The sample is then extended using orbits published by several groups and a full analysis of the MRD is made, without any assumption on the functional form. I derive the MRD using a Richardson-Lucy inversion method, assuming a fixed mass of the Am primary and randomly distributed orbital inclinations. Using the large sub-sample of double-lined spectroscopic binaries, I show that this methodology is indeed perfectly adequate. Using the inversion method, applied to my extended sample of 162 systems, I find that the final MRD can be approximated by a uniform distribution.Comment: 7 pages, 9 figures; Accepted by A&

    Shrinking binary and planetary orbits by Kozai cycles with tidal friction

    Full text link
    At least two arguments suggest that the orbits of a large fraction of binary stars and extrasolar planets shrank by 1-2 orders of magnitude after formation: (i) the physical radius of a star shrinks by a large factor from birth to the main sequence, yet many main-sequence stars have companions orbiting only a few stellar radii away, and (ii) in current theories of planet formation, the region within ~0.1 AU of a protostar is too hot and rarefied for a Jupiter-mass planet to form, yet many "hot Jupiters" are observed at such distances. We investigate orbital shrinkage by the combined effects of secular perturbations from a distant companion star (Kozai oscillations) and tidal friction. We integrate the relevant equations of motion to predict the distribution of orbital elements produced by this process. Binary stars with orbital periods of 0.1 to 10 days, with a median of ~2 d, are produced from binaries with much longer periods (10 d to 10^5 d), consistent with observations indicating that most or all short-period binaries have distant companions (tertiaries). We also make two new testable predictions: (1) For periods between 3 and 10 d, the distribution of the mutual inclination between the inner binary and the tertiary orbit should peak strongly near 40 deg and 140 deg. (2) Extrasolar planets whose host stars have a distant binary companion may also undergo this process, in which case the orbit of the resulting hot Jupiter will typically be misaligned with the equator of its host star.Comment: Submitted to ApJ; 18 pages, 10 figure

    Dynamical Measurements of the Young Upper Scorpius Triple NTTS 155808-2219

    Full text link
    The young, low-mass, triple system NTTS 155808-2219 (ScoPMS 20) was previously identified as a ~17-day period single-lined spectroscopic binary with a tertiary component at 0.21 arcseconds. Using high-resolution infrared spectra, acquired with NIRSPEC on Keck II, both with and without adaptive optics, we measured radial velocities of all three components. Reanalysis of the single-lined visible light observations, made from 1987 to 1993, also yielded radial velocity detections of the three stars. Combining visible light and infrared data to compute the orbital solution produces orbital parameters consistent with the single-lined solution and a mass ratio of q = 0.78 +/- 0.01 for the SB. We discuss the consistency between our results and previously published data on this system, our radial-velocity analysis with both observed and synthetic templates, and the possibility that this system is eclipsing, providing a potential method for the determination of the stars' absolute masses. Over the ~20 year baseline of our observations, we have measured the acceleration of the SB's center-of-mass in its orbit with the tertiary. Long-term, adaptive optics imaging of the tertiary will eventually yield dynamical data useful for component mass estimates.Comment: 6 Tables, 8 Figures, updated to match published tex

    Canonical Timing and Spectral Behavior of LMC X-3 in the Low/Hard State

    Full text link
    We present results from three observations with the Rossi X-ray Timing Explorer (RXTE) of LMC X-3, obtained while the source was in an extended 'low/hard' state. The data reveal a hard X-ray spectrum which is well fit by a pure power law with photon index Gamma=1.69+/-0.02, with a source luminosity at 50 kpc of 5-16x10^{36}erg/s (2--10 keV). Strong broad-band (0.01-100 Hz) time variability is also observed, with fractional rms amplitude 40+/-4%, plus a quasi-periodic oscillation (QPO) peak at 0.46+/-0.02 Hz with rms amplitude \~14%. This is the first reported observation in which the full canonical low/hard state behavior (pure hard power law spectrum combined with strong broad-band noise and QPO) for LMC X-3 is seen. We reanalyze several archival RXTE observations of LMC X-3 and derive consistent spectral and timing parameters, and determine the overall luminosity variation between high/soft and low/hard states. The timing and spectral properties of LMC X-3 during the recurrent low/hard states are quantitatively similar to that typically seen in the Galactic black hole candidates.Comment: 5 pages, 3 figures, accepted for ApJ Letter

    The Highly Eccentric Pre-Main Sequence Spectroscopic Binary RX J0529.3+1210

    Full text link
    The young system RX J0529.3+1210 was initially identified as a single-lined spectroscopic binary. Using high-resolution infrared spectra, acquired with NIRSPEC on Keck II, we measured radial velocities for the secondary. The method of using the infrared regime to convert single-lined spectra into double-lined spectra, and derive the mass ratio for the binary system, has been successfully used for a number of young, low-mass binaries. For RX J0529.3+1210, a long- period(462 days) and highly eccentric(0.88) binary system, we determine the mass ratio to be 0.78+/-0.05 using the infrared double-lined velocity data alone, and 0.73+/-0.23 combining visible light and infrared data in a full orbital solution. The large uncertainty in the latter is the result of the sparse sampling in the infrared and the high eccentricity: the stars do not have a large velocity separation during most of their ~1.3 year orbit. A mass ratio close to unity, consistent with the high end of the one sigma uncertainty for this mass ratio value, is inconsistent with the lack of a visible light detection of the secondary component. We outline several scenarios for a color difference in the two stars, such as one heavily spotted component, higher order multiplicity, or a unique evolutionary stage, favoring detection of only the primary star in visible light, even in a mass ratio ~1 system. However, the evidence points to a lower ratio. Although RX J0529.3+1210 exhibits no excess at near-infrared wavelengths, a small 24 micron excess is detected, consistent with circumbinary dust. The properties of this binary and its membership in Lambda Ori versus a new nearby stellar moving group at ~90 pc are discussed. We speculate on the origin of this unusual system and on the impact of such high eccentricity on the potential for planet formation.Comment: 4 Figure

    Thyroid: Medullary carcinoma

    Get PDF
    Review on Thyroid: Medullary carcinoma, with data on clinics, and the genes involved

    CoRoT 101186644: A transiting low-mass dense M-dwarf on an eccentric 20.7-day period orbit around a late F-star

    Get PDF
    We present the study of the CoRoT transiting planet candidate 101186644, also named LRc01_E1_4780. Analysis of the CoRoT lightcurve and the HARPS spectroscopic follow-up observations of this faint (m_V = 16) candidate revealed an eclipsing binary composed of a late F-type primary (T_eff = 6090 +/- 200 K) and a low-mass, dense late M-dwarf secondary on an eccentric (e = 0.4) orbit with a period of ~20.7 days. The M-dwarf has a mass of 0.096 +/- 0.011 M_Sun, and a radius of 0.104 +0.026/-0.006 R_Sun, which possibly makes it the smallest and densest late M-dwarf reported so far. Unlike the claim that theoretical models predict radii that are 5%-15% smaller than measured for low-mass stars, this one seems to have a radius that is consistent and might even be below the radius predicted by theoretical models.Comment: Accepted for publication in Astronomy & Astrophysics, 8 pages, 10 figure

    Hubble Space Telescope Transmission Spectroscopy of the Exoplanet HD 189733b: High-altitude atmospheric haze in the optical and near-UV with STIS

    Get PDF
    We present Hubble Space Telescope optical and near-ultraviolet transmission spectra of the transiting hot-Jupiter HD189733b, taken with the repaired Space Telescope Imaging Spectrograph (STIS) instrument. The resulting spectra cover the range 2900-5700 Ang and reach per-exposure signal-to-noise levels greater than 11,000 within a 500 Ang bandwidth. We used time series spectra obtained during two transit events to determine the wavelength dependance of the planetary radius and measure the exoplanet's atmospheric transmission spectrum for the first time over this wavelength range. Our measurements, in conjunction with existing HST spectra, now provide a broadband transmission spectrum covering the full optical regime. The STIS data also shows unambiguous evidence of a large occulted stellar spot during one of our transit events, which we use to place constraints on the characteristics of the K dwarf's stellar spots, estimating spot temperatures around Teff~4250 K. With contemporaneous ground-based photometric monitoring of the stellar variability, we also measure the correlation between the stellar activity level and transit-measured planet-to-star radius contrast, which is in good agreement with predictions. We find a planetary transmission spectrum in good agreement with that of Rayleigh scattering from a high-altitude atmospheric haze as previously found from HST ACS camera. The high-altitude haze is now found to cover the entire optical regime and is well characterised by Rayleigh scattering. These findings suggest that haze may be a globally dominant atmospheric feature of the planet which would result in a high optical albedo at shorter optical wavelengths.Comment: 14 pages, 14 figures, 4 tables, accepted to MNRAS, revised version has minor change
    corecore