At least two arguments suggest that the orbits of a large fraction of binary
stars and extrasolar planets shrank by 1-2 orders of magnitude after formation:
(i) the physical radius of a star shrinks by a large factor from birth to the
main sequence, yet many main-sequence stars have companions orbiting only a few
stellar radii away, and (ii) in current theories of planet formation, the
region within ~0.1 AU of a protostar is too hot and rarefied for a Jupiter-mass
planet to form, yet many "hot Jupiters" are observed at such distances. We
investigate orbital shrinkage by the combined effects of secular perturbations
from a distant companion star (Kozai oscillations) and tidal friction. We
integrate the relevant equations of motion to predict the distribution of
orbital elements produced by this process. Binary stars with orbital periods of
0.1 to 10 days, with a median of ~2 d, are produced from binaries with much
longer periods (10 d to 10^5 d), consistent with observations indicating that
most or all short-period binaries have distant companions (tertiaries). We also
make two new testable predictions: (1) For periods between 3 and 10 d, the
distribution of the mutual inclination between the inner binary and the
tertiary orbit should peak strongly near 40 deg and 140 deg. (2) Extrasolar
planets whose host stars have a distant binary companion may also undergo this
process, in which case the orbit of the resulting hot Jupiter will typically be
misaligned with the equator of its host star.Comment: Submitted to ApJ; 18 pages, 10 figure