153 research outputs found
A New SiC-Whisker-Reinforced Lithium Aluminosilicate Composite
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65747/1/j.1151-2916.1993.tb04016.x.pd
Assessment of the AlâFeâTi system
The AlâFeâTi system has been assessed and the limiting binary systems are shortly reviewed. Based on a thorough review of the literature, isotherms at 800, 900, and 1000 °C have been re-evaluated and a provisional isotherm at 1200 °C is presented for the first time. The effect of alloying the binary phases with the third component is reviewed with regard to the ternary homogeneity ranges, crystallography, order/disorder transformations, and site occupancies. Of the variously reported ternary compounds only the existence of âAl2FeTiâ (Ï2) and âAl8FeTi3â (Ï3) is confirmed. The occurrence of the phases Ï2*, ÏâČ2, and of a new stacking variant of TiAl is still under discussion, while the existence of the phases Fe2AlTi (Ï1) and Fe25Al69Ti6 (X) is ruled out. The presented reaction scheme corroborates the isothermal sections and also a representation of the liquidus surface is given. Magnetic, electrical, thermochemical, atomistic and diffusion data for AlâFeâTi alloys are summarised and an overview about studies on modelling of phase equilibria and phase transformations is given
An Underground Coal Mine Fire Preparedness And Response Checklist: The Instrument
Preparedness is an important element of any underground mine's strategic plan in dealing with an unexpected event, such as a fire. A fully implemented fire preparedness and response plan is essential in reducing the probability and seriousness of a mine fire. This report describes the development of an underground coal mine fire preparedness and response checklist (MFPRC). The checklist is a data collection instrument for profiling both the fire prevention and response capabilities of a mine site and usually requires 3 to 4 days to complete. The checklist encompasses conditions, procedures, and equipment that have frequently been identified as the primary or contributing causes of underground coal mine fires. At least 1 day is needed underground to evaluate the water system. This entails measurements of water flows and pressures at fire hydrants, and water throw distances of fire hose and nozzles at several locations (mains and branch lines). A few of the other topics that are discussed with mine personnel include detection and suppression systems, combustible materials, mine rescue and fire brigades, and firefighting equipment. The MFPRC was developed by the National Institute for Occupational Safety and Health (NIOSH),Pittsburgh Research Laboratory. Under a Cooperative Research and Development Agreement (CRADA) with Cyprus Amax, Twenty mile Coal Co. (Oak Creek, CO), the checklist was field tested and further refined. Additional field tests were conducted at several other operating coal mines
Heat stress increase under climate change twice as large in cities as in rural areas : a study for a densely populated midlatitude maritime region
Urban areas are usually warmer than their surrounding natural areas, an effect known as the urban heat island effect. As such, they are particularly vulnerable to global warming and associated increases in extreme temperatures. Yet ensemble climate-model projections are generally performed on a scale that is too coarse to represent the evolution of temperatures in cities. Here, for the first time, we combine unprecedented long-term (35years) urban climate model integrations at the convection-permitting scale (2.8km resolution) with information from an ensemble of general circulation models to assess temperature-based heat stress for Belgium, a densely populated midlatitude maritime region. We discover that the heat stress increase toward the mid-21st century is twice as large in cities compared to their surrounding rural areas. The exacerbation is driven by the urban heat island itself, its concurrence with heat waves, and urban expansion. Cities experience a heat stress multiplication by a factor 1.4 and 15 depending on the scenario. Remarkably, the future heat stress surpasses everywhere the urban hot spots of today. Our results demonstrate the need to combine information from climate models, acting on different scales, for climate change risk assessment in heterogeneous regions. Moreover, these results highlight the necessity for adaptation to increasing heat stress, especially in urban areas
Climate-informed environmental inflows to revive a drying lake facing meteorological and anthropogenic droughts
The rapid shrinkage of Lake Urmia, one of the world's largest saline lakes located in northwestern Iran, is a tragic wake-up call to revisit the principles of water resources management based on the socio-economic and environmental dimensions of sustainable development. The overarching goal of this paper is to set a framework for deriving dynamic, climate-informed environmental inflows for drying lakes considering both meteorological/climatic and anthropogenic conditions. We report on the compounding effects of meteorological drought and unsustainable water resource management that contributed to Lake Urmia's contemporary environmental catastrophe. Using rich datasets of hydrologic attributes, water demands and withdrawals, as well as water management infrastructure (i.e. reservoir capacity and operating policies), we provide a quantitative assessment of the basin's water resources, demonstrating that Lake Urmia reached a tipping point in the early 2000s. The lake level failed to rebound to its designated ecological threshold (1274 m above sea level) during a relatively normal hydro-period immediately after the drought of record (1998-2002). The collapse was caused by a marked overshoot of the basin's hydrologic capacity due to growing anthropogenic drought in the face of extreme climatological stressors. We offer a dynamic environmental inflow plan for different climate conditions (dry, wet and near normal), combined with three representative water withdrawal scenarios. Assuming effective implementation of the proposed 40% reduction in the current water withdrawals, the required environmental inflows range from 2900 million cubic meters per year (mcm yrâ1) during dry conditions to 5400 mcm yrâ1 during wet periods with the average being 4100 mcm yrâ1. Finally, for different environmental inflow scenarios, we estimate the expected recovery time for re-establishing the ecological level of Lake Urmia
- âŠ