56 research outputs found

    Analysis of recombination in molecular sequence data

    Get PDF
    We present the new and fast method Recco for analyzing a multiple alignment regarding recombination. Recco is based on a dynamic program that explains one sequence in the alignment with the other sequences using mutation and recombination. The dynamic program allows for an intuitive visualization of the optimal solution and also introduces a parameter α controlling the number of recombinations in the solution. Recco performs a parametric analysis regarding α and orders all pareto-optimal solutions by increasing number of recombinations. α is also directly related to the Savings value, a quantitative and intuitive measure for the preference of recombination in the solution. The Savings value and the solutions have a simple interpretation regarding the ancestry of the sequences in the alignment and it is usually easy to understand the output of the method. The distribution of the Savings value for non-recombining alignments is estimated by processing column permutations of the alignment and p-values are provided for recombination in the alignment, in a sequence and at a breakpoint position. Recco also uses the p-values to suggest a single solution, or recombinant structure, for the explained sequence. Recco is validated on a large set of simulated alignments and has a recombination detection performance superior to all current methods. The analysis of real alignments confirmed that Recco is among the best methods for recombination analysis and further supported that Recco is very intuitive compared to other methods.Wir präsentieren Recco, eine neue und schnelle Methode zur Analyse von Rekombinationen in multiplen Alignments. Recco basiert auf einem dynamischen Programm, welches eine Sequenz im Alignment durch die anderen Sequenzen im Alignment rekonstruiert, wobei die Operatoren Mutation und Rekombination erlaubt sind. Das dynamische Programm ermöglicht eine intuitive Visualisierung der optimalen Lösung und besitzt einen Parameter α, welcher die Anzahl der Rekombinationsereignisse in der optimalen Lösung steuert. Recco führt eine parametrische Analyse bezüglich des Parameters α durch, so dass alle pareto-optimalen Lösungen nach der Anzahl ihrer Rekombinationsereignisse sortiert werden können. α steht auch direkt in Beziehung mit dem sogenannten Savings-Wert, der die Neigung zum Einfügen von Rekombinationsereignissen in die optimale Lösung quantitativ und intuitiv bemisst. Der Savings-Wert und die optimalen Lösungen haben eine einfache Interpretation bezüglich der Historie der Sequenzen im Alignment, so dass es in der Regel leicht fällt, die Ausgabe von Recco zu verstehen. Recco schätzt die Verteilung des Savings-Werts für Alignments ohne Rekombinationen durch einen Permutationstest, der auf Spaltenpermutationen basiert. Dieses Verfahren resultiert in p-Werten für Rekombination im Alignment, in einer Sequenz und an jeder Position im Alignment. Basierend auf diesen p-Werten schlägt Recco eine optimale Lösung vor, als Schätzer für die rekombinante Struktur der erklärten Sequenz. Recco wurde auf einem großen Datensatz simulierter Alignments getestet und erzielte auf diesem Datensatz eine bessere Vorhersagegüte in Bezug auf das Erkennen von Alignments mit Rekombination als alle anderen aktuellen Verfahren. Die Analyse von realen Datensätzen bestätigte, dass Recco zu den besten Methoden für die Rekombinationsanalyse gehört und im Vergleich zu anderen Methoden oft leichter verständliche Resultate liefert

    Expression pattern analysis of transcribed HERV sequences is complicated by ex vivo recombination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human genome comprises numerous human endogenous retroviruses (HERVs) that formed millions of years ago in ancestral species. A number of loci of the HERV-K(HML-2) family are evolutionarily much younger. A recent study suggested an infectious HERV-K(HML-2) variant in humans and other primates. Isolating such a variant from human individuals would be a significant finding for human biology.</p> <p>Results</p> <p>When investigating expression patterns of specific HML-2 proviruses we encountered HERV-K(HML-2) cDNA sequences without proviral homologues in the human genome, named HERV-KX, that could very well support recently suggested infectious HML-2 variants. However, detailed sequence analysis, using the software RECCO, suggested that HERV-KX sequences were produced by recombination, possibly arising <it>ex vivo</it>, between transcripts from different HML-2 proviral loci.</p> <p>Conclusion</p> <p>As RT-PCR probably will be instrumental for isolating an infectious HERV-K(HML-2) variant, generation of "new" HERV-K(HML-2) sequences by <it>ex vivo </it>recombination seems inevitable. Further complicated by an unknown amount of allelic sequence variation in HERV-K(HML-2) proviruses, newly identified HERV-K(HML-2) variants should be interpreted very cautiously.</p

    Detecting Phylogenetic Breakpoints and Discordance from Genome-Wide Alignments for Species Tree Reconstruction

    Get PDF
    With the easy acquisition of sequence data, it is now possible to obtain and align whole genomes across multiple related species or populations. In this work, I assess the performance of a statistical method to reconstruct the whole distribution of phylogenetic trees along the genome, estimate the proportion of the genome for which a given clade is true, and infer a concordance tree that summarizes the dominant vertical inheritance pattern. There are two main issues when dealing with whole-genome alignments, as opposed to multiple genes: the size of the data and the detection of recombination breakpoints. These breakpoints partition the genomic alignment into phylogenetically homogeneous loci, where sites within a given locus all share the same phylogenetic tree topology. To delimitate these loci, I describe here a method based on the minimum description length (MDL) principle, implemented with dynamic programming for computational efficiency. Simulations show that combining MDL partitioning with Bayesian concordance analysis provides an efficient and robust way to estimate both the vertical inheritance signal and the horizontal phylogenetic signal. The method performed well both in the presence of incomplete lineage sorting and in the presence of horizontal gene transfer. A high level of systematic bias was found here, highlighting the need for good individual tree building methods, which form the basis for more elaborate gene tree/species tree reconciliation methods

    Low-dose rectal inoculation of rhesus macaques by SIVsmE660 or SIVmac251 recapitulates human mucosal infection by HIV-1

    Get PDF
    We recently developed a novel strategy to identify transmitted HIV-1 genomes in acutely infected humans using single-genome amplification and a model of random virus evolution. Here, we used this approach to determine the molecular features of simian immunodeficiency virus (SIV) transmission in 18 experimentally infected Indian rhesus macaques. Animals were inoculated intrarectally (i.r.) or intravenously (i.v.) with stocks of SIVmac251 or SIVsmE660 that exhibited sequence diversity typical of early-chronic HIV-1 infection. 987 full-length SIV env sequences (median of 48 per animal) were determined from plasma virion RNA 1–5 wk after infection. i.r. inoculation was followed by productive infection by one or a few viruses (median 1; range 1–5) that diversified randomly with near starlike phylogeny and a Poisson distribution of mutations. Consensus viral sequences from ramp-up and peak viremia were identical to viruses found in the inocula or differed from them by only one or a few nucleotides, providing direct evidence that early plasma viral sequences coalesce to transmitted/founder viruses. i.v. infection was >2,000-fold more efficient than i.r. infection, and viruses transmitted by either route represented the full genetic spectra of the inocula. These findings identify key similarities in mucosal transmission and early diversification between SIV and HIV-1, and thus validate the SIV–macaque mucosal infection model for HIV-1 vaccine and microbicide research

    The impact of sex-role reversal on the diversity of the major histocompatibility complex: Insights from the seahorse (Hippocampus abdominalis)

    Get PDF
    Background: Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex(MHC/MH) is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sexrelated differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Results: Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIb locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIb allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIb locus of the seahorse exhibits a novel expression domain in the male brood pouch. Conclusions: The high variation found at the seahorse MHIIb gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates. Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation, providing powerful comparative models for understanding the relative importance of selective factors in shaping patterns of genetic variation

    HIV Evolution in Early Infection: Selection Pressures, Patterns of Insertion and Deletion, and the Impact of APOBEC

    Get PDF
    The pattern of viral diversification in newly infected individuals provides information about the host environment and immune responses typically experienced by the newly transmitted virus. For example, sites that tend to evolve rapidly across multiple early-infection patients could be involved in enabling escape from common early immune responses, could represent adaptation for rapid growth in a newly infected host, or could represent reversion from less fit forms of the virus that were selected for immune escape in previous hosts. Here we investigated the diversification of HIV-1 env coding sequences in 81 very early B subtype infections previously shown to have resulted from transmission or expansion of single viruses (n = 78) or two closely related viruses (n = 3). In these cases, the sequence of the infecting virus can be estimated accurately, enabling inference of both the direction of substitutions as well as distinction between insertion and deletion events. By integrating information across multiple acutely infected hosts, we find evidence of adaptive evolution of HIV-1 env and identify a subset of codon sites that diversified more rapidly than can be explained by a model of neutral evolution. Of 24 such rapidly diversifying sites, 14 were either i) clustered and embedded in CTL epitopes that were verified experimentally or predicted based on the individual's HLA or ii) in a nucleotide context indicative of APOBEC-mediated G-to-A substitutions, despite having excluded heavily hypermutated sequences prior to the analysis. In several cases, a rapidly evolving site was embedded both in an APOBEC motif and in a CTL epitope, suggesting that APOBEC may facilitate early immune escape. Ten rapidly diversifying sites could not be explained by CTL escape or APOBEC hypermutation, including the most frequently mutated site, in the fusion peptide of gp41. We also examined the distribution, extent, and sequence context of insertions and deletions, and we provide evidence that the length variation seen in hypervariable loop regions of the envelope glycoprotein is a consequence of selection and not of mutational hotspots. Our results provide a detailed view of the process of diversification of HIV-1 following transmission, highlighting the role of CTL escape and hypermutation in shaping viral evolution during the establishment of new infections

    Analysis of recombination in Molecular Sequence Data

    No full text
    corecore