14 research outputs found

    Intensified Aleutian Low induces weak Pacific Decadal Variability

    Get PDF
    The Aleutian Low drives decadal variability in North Pacific sea surface temperatures (SST), but its role in basin-wide Pacific SST variability is less clear owing to the difficulty of disentangling coupled atmosphere-ocean processes. We apply local atmospheric nudging to isolate the effects of an intense winter Aleutian Low using an intermediate complexity climate model. An intensified Aleutian Low produces a basin-wide SST response with a similar pattern to internally-generated Pacific Decadal Oscillation (PDO). The amplitude of the SST response in the North Pacific is comparable to PDO, but in the tropics and southern subtropics the anomalies induced by the intense Aleutian Low are a factor of 3 weaker. The tropical Pacific warming peaks in boreal spring, though anomalies persist year-round. A heat budget analysis shows the northern subtropical Pacific SST response is predominantly driven by anomalous surface heat fluxes in boreal winter, while in the equatorial Pacific the response is mainly due to meridional heat advection in boreal spring. The propagation of anomalies from the extratropics to the tropics can be explained by the seasonal footprinting mechanism, involving the wind-evaporation-SST feedback. The results show that low frequency variability and trends in the Aleutian Low could contribute to basin-wide anomalous Pacific SST, but the magnitude of the effect cannot explain the full amplitude of the PDO. This finding suggests that external forcing of the Aleutian Low is unlikely to explain observed shifts in the phase of PDO in the late 20th and early-21st centuries

    Sustained intensification of the Aleutian Low induces weak tropical Pacific sea surface warming

    Get PDF
    It has been proposed that externally forced trends in the Aleutian Low can induce a basin-wide Pacific sea surface temperature (SST) response that projects onto the pattern of the Pacific Decadal Oscillation (PDO). To investigate this hypothesis, we apply local atmospheric nudging in an intermediate-complexity climate model to isolate the effects of an intensified winter Aleutian Low sustained over several decades. An intensification of the Aleutian Low produces a basin-wide SST response with a similar pattern to the model's internally generated PDO. The amplitude of the SST response in the North Pacific is comparable to the PDO, but in the tropics and southern subtropics the anomalies induced by the imposed Aleutian Low anomaly are a factor of 3 weaker than for the internally generated PDO. The tropical Pacific warming peaks in boreal spring, though anomalies persist year-round. A heat budget analysis shows the northern subtropical Pacific SST response is predominantly driven by anomalous surface turbulent heat fluxes in boreal winter, while in the equatorial Pacific the response is mainly due to meridional heat advection in boreal spring. The propagation of anomalies from the extratropics to the tropics can be explained by the seasonal footprinting mechanism, involving the wind–evaporation–SST feedback. The results show that low-frequency variability and trends in the Aleutian Low could contribute to basin-wide anomalous Pacific SST, but the magnitude of the effect in the tropical Pacific, even for the extreme Aleutian Low forcing applied here, is small. Therefore, external forcing of the Aleutian Low is unlikely to account for observed decadal SST trends in the tropical Pacific in the late 20th and early 21st centuries

    Future global climate: scenario-based projections and near-term information

    Get PDF
    This chapter assesses simulations of future global climate change, spanning time horizons from the near term (2021–2040), mid-term (2041–2060), and long term (2081–2100) out to the year 2300. Changes are assessed relative to both the recent past (1995–2014) and the 1850–1900 approximation to the pre-industrial period

    Do split and displacement sudden stratospheric warmings have different annular mode signatures?

    Get PDF
    Sudden stratospheric warmings (SSWs) contribute to intraseasonal tropospheric forecasting skill due to their surface impacts. Recent studies suggest these impacts depend upon whether the polar vortex splits or is displaced during the SSW. We analyse the annular mode signatures of SSWs in a 1000 year IPSL-CM5A-LR simulation. Although small differences in the mean surface Northern Annular Mode (NAM) index following splits and displacements are found, the sign is not consistent for two independent SSW algorithms, and over 50 events are required to distinguish the responses. We use the winter-time correlation between extratropical lower stratospheric wind anomalies and the surface NAM index as a metric for two-way stratosphere-troposphere coupling, and find that the differences between splits and displacements, and between classification methodologies, can be simply understood in terms of their mean stratospheric wind anomalies. Predictability studies should therefore focus on understanding the factors that determine the persistence of these anomalies following SSWs

    Dataset of Indian wind farms and synthetic wind generation timeseries per Indian state

    No full text
    Supplementary data to the paper “The role of repowering India’s ageing wind farms in achieving net-zero ambitions”. Contains synthetic wind generation timeseries per Indian state and dataset of dataset of Indian wind farms used to construct the synthetic wind generation timeseries

    Separating the role of direct radiative heating and photolysis in modulating the atmospheric response to the 11-year solar cycle forcing

    No full text
    The atmospheric response to the 11-year solar cycle forcing is separated into the contributions from changes in direct radiative heating and photolysis rates using specially designed sensitivity simulations with the UM-UKCA chemistry-climate model. We find that contributions from changes in direct heating and photolysis rates are important for determining the shortwave heating, temperature and ozone responses to the solar cycle forcing. The combined effects of the processes are found to be largely additive in the tropics but non-additive in the high latitudes, in particular in the Southern Hemisphere (SH) during the dynamically active season. We find marked differences in the changes in magnitude and vertical structure of shortwave heating rates gradients across the SH in austral winter, thereby highlighting a potential sensitivity of the polar dynamical response to the altitude of the anomalous radiative tendencies. In addition, our results indicate that, in contrast to the original mechanism proposed in the literature, the solar-induced changes in the horizontal shortwave heating rate gradients not only in autumn/early winter, but throughout the dynamically active season are important for modulating the dynamical response. In spring, these gradients are strongly influenced by the shortwave heating anomalies at higher southern latitudes, which are closely linked to the concurrent changes in ozone. Our results suggest that solar-induced changes in ozone, both in the tropics/mid-latitudes and the polar regions, are important for modulating the SH dynamical response to the 11-year solar cycle. In addition, the markedly non-additive character of the SH polar vortex response simulated in austral spring highlights the need for consistent model implementation of the solar cycle forcing in both the radiative heating and photolysis schemes
    corecore